【題目】在平面直角坐標系中,O為原點,點A(1,0),點B(0, ),把△ABO繞點O順時針旋轉(zhuǎn),得A′B′O,記旋轉(zhuǎn)角為α.

(Ⅰ)如圖①,當(dāng)α=30°時,求點B′的坐標;

(Ⅱ)設(shè)直線AA′與直線BB′相交于點M.

如圖②,當(dāng)α=90°時,求點M的坐標;

②點C(﹣1,0),求線段CM長度的最小值.(直接寫出結(jié)果即可)

【答案】)B′(, );(M(, ),②最小值=﹣1.

【解析】試題分析:(Ⅰ)記A′B′與x軸交于點H.只要求出OH,B′H即可解決問題;
(Ⅱ)①作MN⊥OA于N,只要求出ON,MN即可解決問題;
②首先證明:點M的運動軌跡為以AB為直徑的⊙O′,當(dāng)C、M、O′共線時,CM的值最小,最小值=CO-AB= -1;

試題解析:

Ⅰ)記A′B′x軸交于點H.

∵∠HOA′=α=30°,

∴∠OHA′=90°,

OH=OA′cos30°=,B′H=OB′cos30°=

B′(, ).

①∵OA=OA′,

RtOAA′是等腰直角三角形,

OB=OB′,

RtOBB′也是等腰直角三角形,

顯然△AMB′是等腰直角三角形,

MNOAN,

OB′=OA+AB′=1+2AN=,

MN=AN=

M(, ).

②如圖③中,

∵∠AOA′=BOB′,OA=OA′,OB=OB′,

∴∠OAA′=OA′A=OBB′=OB′B,

∵∠OAA′+∠OAM=180°,

∴∠OBB′+∠OAM=180°,

∴∠AOB+∠AMB=180°,

∵∠AOB=90°,

∴∠AMB=90°,

∴點M的運動軌跡為以AB為直徑的⊙O′,

當(dāng)C、M、O′共線時,CM的值最小,最小值=CO′﹣AB=﹣1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交ACAB邊于E,F若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球訓(xùn)練中,為了訓(xùn)練球員快速搶斷轉(zhuǎn)身,教練在東西方向的足球場上畫了一條直線,要求球員在這條直線上進行折返跑訓(xùn)練,如果約定向西為正,向東為負,將某球員的一組折返距練習(xí)記錄如下(單位:米) ,

球員最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

球員訓(xùn)練過程中,最遠處離出發(fā)點 米?

球員在這一組練習(xí)過程中,共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果,那么稱bn的布谷數(shù),記為.

例如:因為,所以

因為,

所以.

1)根據(jù)布谷數(shù)的定義填空:g2=________________,g32=___________________.

2)布谷數(shù)有如下運算性質(zhì):

mn為正整數(shù),則,.

根據(jù)運算性質(zhì)解答下列各題:

①已知,求的值;

②已知.的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是最大的負整數(shù),C-4的相反數(shù),且、分別是點、、在數(shù)軸上對應(yīng)的數(shù).

1)求、的值,并在數(shù)軸上標出點、

2)在數(shù)軸上,若的距離剛好是3,則點叫做的“幸福點”則的幸福點所表示的數(shù)應(yīng)該是_________

3)若動點從點出發(fā)沿數(shù)軸向正方向運動,動點同時從點出發(fā)也沿數(shù)軸向正方向運動,點的速度是每秒3個單位長度,點的速度是每秒1個單位長度,求運動幾秒后,點可以追上點

4)在數(shù)軸上,若的距離之和為6,則叫做、的幸福中心請直接寫出所有點在數(shù)軸上對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BD、BE分別是△ABC的高線和角平分線,點F在CA的延長線上,F(xiàn)H⊥BE交BD于點G,交BC于點H.下列結(jié)論:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖 ,AD 是∠BAC 的平分線,且 DFAC F,∠B=90°DE=DC.

1)求證:BE=CF.

2)若ADE DCF 的面積分別是125,求ABC 的面積.

3)請你寫出∠BAC與∠CDE有什么數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點O,∠AOE=90°.

1)如圖1,若OC平分∠AOE,求∠AOD的度數(shù);

2)如圖2,若∠BOC=4FOB,且OE平分∠FOC,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中裝有僅顏色不同的20個小球,其中紅球6個,黑球14

1)先從袋子中取出xx3)個紅球后,再從袋子中隨機摸出1個球,將“摸出黑球”,記為事件A.請完成下列表格.

事件A

必然事件

隨機事件

x的值

2)先從袋子中取出m個紅球,再放入2m個一樣的黑球并搖勻,隨機摸出1個球是黑球的概率是,求m的值.

查看答案和解析>>

同步練習(xí)冊答案