,是方程的兩個不相等的實數(shù)根,則代數(shù)式的值是(    )

A.19                       B.15                C.11                D.3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

設拋物線C的解析式為:y=x2-2kx+(
3
+k)k,k為實數(shù).
(1)求拋物線的頂點坐標和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數(shù)值,請寫出三個對應的頂點坐標;試說明當k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設兩圓在x軸上的切點分別為A、B(OA<OB),試問:
OA
OB
是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

設拋物線C的解析式為:y=x2-2kx+(數(shù)學公式+k)k,k為實數(shù).
(1)求拋物線的頂點坐標和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數(shù)值,請寫出三個對應的頂點坐標;試說明當k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設兩圓在x軸上的切點分別為A、B(OA<OB),試問:數(shù)學公式是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2003•長沙)設拋物線C的解析式為:y=x2-2kx+(+k)k,k為實數(shù).
(1)求拋物線的頂點坐標和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數(shù)值,請寫出三個對應的頂點坐標;試說明當k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設兩圓在x軸上的切點分別為A、B(OA<OB),試問:是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年湖南省長沙市中考數(shù)學試卷(解析版) 題型:解答題

(2003•長沙)設拋物線C的解析式為:y=x2-2kx+(+k)k,k為實數(shù).
(1)求拋物線的頂點坐標和對稱軸方程(用k表示);
(2)任意給定k的三個不同實數(shù)值,請寫出三個對應的頂點坐標;試說明當k變化時,拋物線C的頂點在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設兩圓在x軸上的切點分別為A、B(OA<OB),試問:是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年遼寧省盤錦市九年級第一次中考模擬數(shù)學試卷(解析版) 題型:解答題

如圖所示,有一個可以自由轉(zhuǎn)動的圓形轉(zhuǎn)盤,被平均分成四個扇形,四個扇形內(nèi)

分別標有數(shù)字1、2、-3、-4.指針固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,指針所指扇形得到相

應位置上的數(shù)字(若指針恰好指在分界線上,則該次不計,重新轉(zhuǎn)動一次,直至指針落在扇

形內(nèi)).

1.若將轉(zhuǎn)盤轉(zhuǎn)動一次,求得到負數(shù)的概率;

2.若將轉(zhuǎn)盤轉(zhuǎn)動兩次,每一次停止轉(zhuǎn)動后,指針指向的扇形內(nèi)的數(shù)字分別記為a、b.請你用列表法或樹狀圖求a與 b都是方程的解的概率.

【解析】

3.讓負數(shù)的個數(shù)除以數(shù)的總個數(shù)即可;

4.求出方程的解,根據(jù)列表法或樹狀圖求進行解答

 

查看答案和解析>>

同步練習冊答案