【題目】如圖,在坐標(biāo)系中放置一菱形,已知,,先將菱形沿軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn),連續(xù)翻轉(zhuǎn)2019次,點的落點依次為,,,…,則的坐標(biāo)為__________.
【答案】(1346,0)
【解析】
根據(jù)題意連接AC,根據(jù)條件可以求出AC,畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,容易發(fā)現(xiàn)規(guī)律:每翻轉(zhuǎn)6次,圖形向右平移4.由于2019=336×6+3,因此點向右平移1344(即336×4)即可到達(dá)點,根據(jù)點的坐標(biāo)就可求出點的坐標(biāo).
解:連接AC,如圖所示:
∵四邊形OABC是菱形,
∴OA=AB=BC=OC.
∵∠ABC=60°,
∴△ABC是等邊三角形.
∴AC=AB.
∴AC=OA.
∵OA=1,
∴AC=1.
畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如上圖所示.
由圖可知:每翻轉(zhuǎn)6次,圖形向右平移4.
∵2019=336×6+3,
∴點向右平移1344(即336×4)到點.
∵的坐標(biāo)為(2,0),
∴的坐標(biāo)為(2+1344,0),
∴的坐標(biāo)為(1346,0).
故答案為:(1346,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結(jié)論①abc>0②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3③4a+2b+c<0④當(dāng)x>0時,y隨x的增大而減小正確的是( 。
A.①③④B.②④C.①②③D.②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC,點D為BC上一點,連接AD.
圖1 圖2
(1)若點E是AC上一點,且CE=BD,連接BE,BE與AD的交點為點P,在圖(1)中根據(jù)題意補(bǔ)全圖形,直接寫出∠APE的大小;
(2)將AD繞點A逆時針旋轉(zhuǎn)120°,得到AF,連接BF交AC于點Q,在圖(2)中根據(jù)題意補(bǔ)全圖形,用等式表示線段AQ和CD的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸的交點為A,B(點A 在點B的左側(cè)).
(1)求點A,B的坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點叫整點.
①直接寫出線段AB上整點的個數(shù);
②將拋物線沿翻折,得到新拋物線,直接寫出新拋物線在軸上方的部分與線段所圍成的區(qū)域內(nèi)(包括邊界)整點的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點、,且與軸交于點,拋物線的頂點為,連接,點是線段上的一個動點(不與、)重合.
(1)求拋物線的解析式,并寫出頂點的坐標(biāo);
(2)過點作軸于點,求面積的最大值及取得最大值時點的坐標(biāo);
(3)在(2)的條件下,若點是軸上一動點,點是拋物線上一動點,試判斷是否存在這樣的點,使得以點,,,為頂點的四邊形是平行四邊若存在,請直接寫出點的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,在平行四邊形ABCD中,點E是BC邊的中點,連結(jié)AE,點F是線段AE上一點,連結(jié)BF并延長,交射線CD于點G.若AF:EF=4:1,求的值.
(1)嘗試探究:
如圖1,過點E作EH∥AB交BG于點H,則AB和EH的數(shù)量關(guān)系是.CG和EH的數(shù)量關(guān)系是,因此= .
(2)類比延伸:
在原題的條件下,若把“AF:EF=4:1”改為“AF:EF=n:1”(n>0),求的值.(用含有n的式子表示)
(3)拓展遷移:
如圖2,在四邊形ABCD中,CD∥AB,點E是BC的延長線上的一點,AE與BD相交于點F.若AB:CD=a:1(a>0),BC:BE=b:1(b>0),則= .(直接用含有a、b的式子表示,不寫解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車庫出口安裝的欄桿如圖所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點.當(dāng)車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么適合該地下車庫的車輛限高標(biāo)志牌為( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).
任務(wù):
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別指什么?
依據(jù)1:
依據(jù)2:
(2)當(dāng)圓內(nèi)接四邊形ABCD是矩形時,托勒密定理就是我們非常熟知的一個定理: (請寫出定理名稱).
(3)如圖(3),四邊形ABCD內(nèi)接于⊙O,AB=3,AD=5,∠BAD=60°,點C是弧BD的中點,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com