【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是長(zhǎng)方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點(diǎn)與原點(diǎn)重合,坐標(biāo)為(0,0)

(1)寫(xiě)出點(diǎn)B的坐標(biāo);

(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)B勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)以每秒4個(gè)單位長(zhǎng)度的速度沿射線CD方向勻速運(yùn)動(dòng),若P,Q兩點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PQ∥BC;

(3)在Q的運(yùn)行過(guò)程中,當(dāng)Q運(yùn)動(dòng)到什么位置時(shí),使△ADQ的面積為9,求此時(shí)Q點(diǎn)的坐標(biāo).

【答案】(1)B(8,6)(2)t為 (3)當(dāng)Q運(yùn)動(dòng)到距原點(diǎn)3cm位置時(shí),使△ADQ的面積為9,此時(shí)Q點(diǎn)的坐標(biāo)(3,0)或(-3,0)

【解析】

試題(1)根據(jù)點(diǎn)的特點(diǎn)可以直接寫(xiě)出坐標(biāo);

2)由平行的位置和移動(dòng)的距離可以設(shè)出時(shí)間t,從而構(gòu)成方程解決;

3)分在D點(diǎn)左右兩邊兩種情況討論構(gòu)成的三角形,根據(jù)面積求出點(diǎn)的坐標(biāo).

試題解析:(1∵AB=DC=8 AD=BC=6

∴B(8,6)

2)運(yùn)動(dòng)時(shí)間為t秒 則t秒時(shí)P3t,6Q(8-4t,0)

∵PQ ∥BC BC∥ AO

∴PQ∥A0y

∴ 3t=8-4t

∴t=

∴t=秒時(shí) PQ//BC

3∵Q在射線CD方向勻速運(yùn)動(dòng).

Q0點(diǎn)右側(cè)時(shí)Q坐標(biāo)(8-4t,0)

S=AD.DQ

∴9=×68-4t

∴t=

此時(shí)8-4t=8-4×=3

∴Q(3,0)

Q在點(diǎn)0左側(cè)時(shí)Q(8-4t,0) S=AD×DQ 9=×6×(4t-8)

∴t=

此時(shí)8-4t=8-4×=-3

∴Q(-3,0)

∴Q點(diǎn)距原點(diǎn)3個(gè)單位時(shí),面積為9

此時(shí)Q(3,0)或(-3,0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD中,AB=4,E是BC上一點(diǎn),將△CDE沿直線DE折疊后,點(diǎn)C落在點(diǎn)C′處,連接C′E交AD于點(diǎn)F,若BE=2,F(xiàn)為AD的中點(diǎn),則AD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某中學(xué)有一塊四邊形的空地ABCD,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測(cè)量∠A=90°AB=3m,BC=12mCD=13m,DA=4m,若每平方米草皮需要200元,問(wèn)學(xué)校需要投入多少資金買(mǎi)草皮?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公交公司為應(yīng)對(duì)春運(yùn)期間的人流高峰,計(jì)劃購(gòu)買(mǎi)A、B兩種型號(hào)的公交車(chē)共10輛,若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)2輛,B型公交車(chē)3輛,共需650萬(wàn)元,

(1)試問(wèn)該公交公司計(jì)劃購(gòu)買(mǎi)A型和B型公交車(chē)每輛各需多少萬(wàn)元?

(2)若該公司預(yù)計(jì)在某條線路上A型和B型公交車(chē)每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用W不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)在某條線路的年均載客量總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車(chē)方案?哪種購(gòu)車(chē)方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知EF分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF

(1)求證:四邊形AECF是平行四邊形;

(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC與△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,連接BE,將BE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得BF,連接AD,BDAF

(1)如圖①,D、E分別在AC,BC邊上,求證:四邊形ADBF為平行四邊形;

(2)△DEC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),其它條件不變,如圖②,(1)的結(jié)論是否成立?說(shuō)明理由.

(3)在圖①中,將△DEC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一周,其它條件不變,問(wèn):旋轉(zhuǎn)角為多少度時(shí).四邊形ADBF為菱形?直接寫(xiě)出旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中, 厘米, 厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_______ 厘米/秒時(shí),能夠在某一時(shí)刻使BPDCQP全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是若干個(gè)粗細(xì)均勻的鐵環(huán)最大限度的拉伸組成的鏈條,已知鐵環(huán)粗0.5厘米,每個(gè)鐵環(huán)長(zhǎng)4.6厘米,設(shè)鐵環(huán)間處于最大限度的拉伸狀態(tài)

(1)填表:

鐵環(huán)個(gè)數(shù)

1

2

3

4

鏈條長(zhǎng)(cm)

4.6

8.2

_____

____

(2)設(shè)n個(gè)鐵環(huán)長(zhǎng)為y厘米,請(qǐng)用含n的式子表示y;

(3)若要組成2.17米長(zhǎng)的鏈條,至少需要多少個(gè)鐵環(huán)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三角形ABC中,點(diǎn)D在線段AB上,DEBCAC于點(diǎn)E,點(diǎn)F在直線BC上,作直線EF,過(guò)點(diǎn)D作直線DHAC交直線EF于點(diǎn)H.

(1)在如圖1所示的情況下,求證:HDE=C;

(2)若三角形ABC不變,D,E兩點(diǎn)的位置也不變,點(diǎn)F在直線BC上運(yùn)動(dòng).

①當(dāng)點(diǎn)H在三角形ABC內(nèi)部時(shí),直接寫(xiě)出∠DHF與∠FEC的數(shù)量關(guān)系;

②當(dāng)點(diǎn)H在三角形ABC外部時(shí),①中結(jié)論是否依然成立?請(qǐng)?jiān)趫D2中畫(huà)圖探究,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案