【題目】如圖,在ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E為AB中點(diǎn),點(diǎn)F在CB的延長(zhǎng)線上,且EF∥BD.
(1)求證;四邊形OBFE是平行四邊形;
(2)當(dāng)線段AD和BD之間滿足什么條件時(shí),四邊形OBFE是矩形?并說(shuō)明理由.
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴點(diǎn)O是AC的中點(diǎn).
又∵點(diǎn)E是邊AB的中點(diǎn),
∴OE是△ABC的中位線,
∴OE∥BC,
又∵點(diǎn)F在CB的延長(zhǎng)線上,
∴OE∥BF.
∵EF∥BD,即EF∥OB,
∴四邊形OBFE是平行四邊形
(2)當(dāng)AD⊥BD時(shí),四邊形OBFE是矩形.
理由:由(1)可知四邊形OBFE是平行四邊形,
又∵AD⊥BD,AD∥BC,且點(diǎn)F在BC的延長(zhǎng)線上,
∴FC⊥BD,
∴∠OBF=90°,
∴四邊形OBFE是矩形
【解析】(1)首先證明OE是△ABC的中位線,推出OE∥BC,由EF∥OB,推薦可提出四邊形OBFE是平行四邊形.(2)當(dāng)AD⊥BD時(shí),四邊形OBFE是矩形. 只要證明∠EOB=90°即可解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某風(fēng)景區(qū)門(mén)票價(jià)格如圖所示,某旅行社有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在“五一”小黃金周期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為120人,乙團(tuán)隊(duì)人數(shù)不超過(guò)50人.設(shè)甲團(tuán)隊(duì)人數(shù)為x人,如果甲、乙兩團(tuán)隊(duì)分別購(gòu)買(mǎi)門(mén)票,兩團(tuán)隊(duì)門(mén)票款之和為W元.
(1)求W關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x 的取值范圍;
(2)若甲團(tuán)隊(duì)人數(shù)不超過(guò)100人,請(qǐng)說(shuō)明甲、乙兩團(tuán)隊(duì)聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,則∠BAE的度數(shù)為何?( 。
A. 115 B. 120 C. 125 D. 130
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“勻稱三角形”.若Rt△ABC為勻稱三角形,且∠C=90°,AC=4,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(-3,2),B(-4,-3),C(-1,-1).
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)寫(xiě)出點(diǎn)△A1,B1,C1的坐標(biāo)(直接寫(xiě)答案):A1_________;B1________;C1________;
(3)求△A1B1C1的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究題
(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ABC和△BDE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接CD.填空;
①CDB的度數(shù)為;
②線段AE,CD之間的數(shù)量關(guān)系為 .
(2)拓展探究
如圖2,△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,點(diǎn)A,D,E在同一直線上,BF為△DBE中DE邊上的高,連接CD.
①求∠CDB的大小;
②請(qǐng)判斷線段BF,AD,CD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖3,在正方形ABCD中,AC=2 ,AE=1,CE⊥AE于E,請(qǐng)補(bǔ)全圖形,求點(diǎn)B到CE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課題學(xué)習(xí):設(shè)計(jì)概率模擬實(shí)驗(yàn). 在學(xué)習(xí)概率時(shí),老師說(shuō):“擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實(shí)驗(yàn)后,正面朝上的概率約是 .”小海、小東、小英分別設(shè)計(jì)了下列三個(gè)模擬實(shí)驗(yàn):
小海找來(lái)一個(gè)啤酒瓶蓋(如圖1)進(jìn)行大量重復(fù)拋擲,然后計(jì)算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;
小東用硬紙片做了一個(gè)圓形轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)上分成8個(gè)大小一樣的扇形區(qū)域,并依次標(biāo)上1至8個(gè)數(shù)字(如圖2),轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)10次,然后計(jì)算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;
小英在一個(gè)不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機(jī)同時(shí)摸出兩枚棋子,并大量重復(fù)上述實(shí)驗(yàn),然后計(jì)算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.
根據(jù)以上材料回答問(wèn)題:
小海、小東、小英三人中,哪一位同學(xué)的實(shí)驗(yàn)設(shè)計(jì)比較合理,并簡(jiǎn)要說(shuō)出其他兩位同學(xué)實(shí)驗(yàn)的不足之處.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com