【題目】在正方形ABCD中,AC為對角線,點E為AC上一點,連接EB,ED.
(1)求證:△BEC≌△DEC;
(2)延長BE交AD于點F,當∠BED=120°時,求∠EFD的度數(shù).
【答案】(1)見解析;(2)105°
【解析】試題分析:(1)根據(jù)正方形的性質(zhì)可得BC=CD,∠ECB=∠ECD=45°,利用全等三角形的判定方法判定△BEC≌△DEC,(2)根據(jù)全等三角形的性質(zhì)可得∠BEC=∠DEC= ,因為∠BED=120°,所以∠BEC=60°=∠AEF,
所以∠EFD=60°+45°=105°.
試題解析: (1)證明:∵四邊形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°,
∴在△BEC與△DEC中,
,
∴△BEC≌△DEC(SAS),
(2)∵△BEC≌△DEC,
∴∠BEC=∠DEC= ,
∵∠BED=120°,
∴∠BEC=60°=∠AEF,
∴∠EFD=60°+45°=105°.
科目:初中數(shù)學 來源: 題型:
【題目】將一列有理數(shù)-1,2,-3,4,-5,6,…如圖排序,根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢?/span>(C的位置)是有理數(shù)4,那么“峰4”中C的位置是有理數(shù)________,有理數(shù)“2018”應排在A,B,C,D,E中的________位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上點 A 表示的有理數(shù)為﹣4,點 B 表示的有理數(shù)為 6,點 P 從 點 A 出發(fā)以每秒 2 個單位長度的速度在數(shù)軸上沿由 A 到 B 方向運動,當點 P 到 達點 B 后立即返回,仍然以每秒 2 個單位長度的速度運動至點 A 停止運動.設 運動時間為 t(單位:秒).
(1)求 t=2 時點 P 表示的有理數(shù);
(2)求點 P 是 AB 的中點時 t 的值;
(3)在點 P 由點 A 到點 B 的運動過程中,求點 P 與點 A 的距離(用含 t 的代數(shù)式表示);
(4)在點 P 由點 B 到點 A 的返回過程中,點 P 表示的有理數(shù)是多少(用含 t 的 代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從2017年起,昆明將迎來“高鐵時代”,這就意味著今后昆明的市民外出旅行的路程與時間將大大縮短,但也有不少游客根據(jù)自己的喜好依然選擇乘坐普通列車;已知從昆明到某市的高鐵行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍,請完成以下問題:(1)普通列車的行駛路程為________千米;(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求普通列車和高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 △ABC 中,∠C=90°,DB⊥BC 于點 ,分別以點 D 和點 為圓心,以大于 的長為半徑作弧,兩弧相交于點 E 和點 ,作直線 EF,延長 AB 于點 ,連接 DG,下面是說明 ∠A=∠D 的說理過程,請把下面的說理過程補充完整:
因為 DB⊥BC(已知),
所以 ∠DBC=90°( ) .
因為 ∠C=90°(已知),
所以 ∠DBC=∠C(等量代換),
所以 DB∥AC ( ) ,
所以 (兩直線平行,同位角相等);
由作圖法可知:直線 EF 是線段 DB 的 ( ) ,
所以 GD=GB,線段 (上的點到線段兩端點的距離相等),
所以 ( ) ,因為 ∠A=∠1(已知),
所以 ∠A=∠D(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=2 ,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將 繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,垂足分別為F,G,若正方形ABCD的周長是40cm.
(1)求證:四邊形BFEG是矩形;
(2)求四邊形EFBG的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線,垂足為O,直線PQ經(jīng)過點O,且點B在直線l上,位于點O下方,點C在直線PQ上運動連接BC過點C作,交直線MN于點A,連接點A、C與點O都不重合.
小明經(jīng)過畫圖、度量發(fā)現(xiàn):在中,始終有一個角與相等,這個角是________________;
當時,在圖中畫出示意圖并證明;
探索和之間的數(shù)量關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com