【題目】8分一次學科測驗,學生得分均為整數(shù),滿分10分,成績達到6分以上包括6分為合格,成績達到9分為優(yōu)秀這次測驗中甲、乙兩組學生成績分布的條形統(tǒng)計圖如圖

1請補充完成下面的成績統(tǒng)計分析表:

平均分

方差

中位數(shù)

合格率

優(yōu)秀率

甲組

69

24

917%

167%

乙組

13

833%

83%

2甲組學生說他們的合格率、優(yōu)秀率均高于乙組,所以他們的成績好于乙組但乙組學生不同意甲組學生的說法,認為他們組的成績要高于甲組請你給出三條支持乙組學生觀點的理由

【答案】1甲組:中位數(shù)7;乙組:平均數(shù)7,中位數(shù)7.(2因為乙組學生的平均成績高于甲組學生的平均成績,所以乙組學生的成績好于甲組;

因為甲、乙兩組學生成績的平均分相差不大,而乙組學生的方差低于甲組學生的方差,說明乙組學生成績的波動性比甲組小,所以乙組學生的成績好于甲組;

因為乙組學生成績的最低分高于甲組學生的最低分,所以乙組學生的成績好于甲組

【解析】

試題分析:中位數(shù)是指將這些數(shù)按照從小到大的順序進行排列,則處于中間的數(shù);平均數(shù)=總數(shù)之和÷樣本容量;從平均分和方差以及最值問題方面進行說明

試題解析:1甲組:中位數(shù)7;乙組:平均數(shù)7,中位數(shù)7

2因為乙組學生的平均成績高于甲組學生的平均成績,所以乙組學生的成績好于甲組;

因為甲、乙兩組學生成績的平均分相差不大,而乙組學生的方差低于甲組學生的方差,說明乙組學生成績的波動性比甲組小,所以乙組學生的成績好于甲組;

因為乙組學生成績的最低分高于甲組學生的最低分,所以乙組學生的成績好于甲組

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點,CD是⊙O的切線,OD∥BC,OD與半圓O交于點E,則下列結(jié)論中不一定正確的是(
A.AC⊥BC
B.BE平分∠ABC
C.BE∥CD
D.∠D=∠A

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古希臘數(shù)學家把數(shù)1,3,6,10,15,21,…叫做三角形數(shù),它有一定的規(guī)律性,若把第一個三角形數(shù)記為x1 , 第二個三角形數(shù)記為x2 , …第n個三角形數(shù)記為xn , 則xn+xn+1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備開展“陽光體育活動”,決定開設(shè)以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學生必須且只能選擇一項,為了解選擇各種體育活動項目的學生人數(shù),隨機抽取了部分學生進行調(diào)查,并將通過獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:

(1)這次活動一共調(diào)查了 名學生;

(2)補全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于 度;

4)若該學校有1500人,請你估計該學校選擇足球項目的學生人數(shù)約是 人。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)在“蜀南竹!笔召徝瘢苯愉N售,每噸可獲利100元,進行粗加工,每天可加工8噸,每噸可獲利800元;如果對毛竹進行精加工,每天可加工1噸,每噸可獲利4000元.由于受條件限制,每天只能采用一種方式加工,要求將在一月內(nèi)(30天)將這批毛竹93噸全部銷售.為此企業(yè)廠長召集職工開會,讓職工討論如何加工銷售更合算.

甲說:將毛竹全部進行粗加工后銷售;

乙說:30天都進行精加工,未加工的毛竹直接銷售;

丙說:30天中可用幾天粗加工,再用幾天精加工后銷售;

請問廠長應(yīng)采用哪位說的方案做,獲利最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD上,折痕的一端E點在邊BC上,BE=10.則折痕的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋里裝有紅、黃、綠三種顏色的球(除顏色不同外其余都相同),其中紅球有2個,黃球有1個,從中任意捧出1球是紅球的概率為
(1)試求袋中綠球的個數(shù);
(2)第1次從袋中任意摸出1球(不放回),第2次再任意摸出1球,請你用畫樹狀圖或列表格的方法,求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在RtABC中,AC=BC,C=90°,點D為AB邊的中點,EDF=90°,EDF繞點D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長線)于點E,F.EDF繞點D旋轉(zhuǎn)到DEAC于點E時(如圖),易證SDEF+SCEF=SABC.

EDF繞點D旋轉(zhuǎn)到DE和AC不垂直時,在圖和圖這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,S△DEF,S△CEF,S△ABC又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.

查看答案和解析>>

同步練習冊答案