【題目】如圖,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度數(shù).
【答案】解:∵∠C=∠ABC=2∠A,
∴∠C+∠ABC+∠A=5∠A=180°,
∴∠A=36°.
∴∠C=∠ABC=2∠A=72°.
∵BD⊥AC,
∴∠DBC=90°﹣∠C=18°.
【解析】根據(jù)三角形的內(nèi)角和定理與∠C=∠ABC=2∠A,即可求得△ABC三個(gè)內(nèi)角的度數(shù),再根據(jù)直角三角形的兩個(gè)銳角互余求得∠DBC的度數(shù).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的內(nèi)角和外角(三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°
(1)求證:AE∥CD;
(2)求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第1個(gè)△A1BC中,∠B=30°,A1B=CB;在邊A1B上任取一點(diǎn)D,延長CA1到A2 , 使A1A2=A1D,得到第2個(gè)△A1A2D;在邊A2D上任取一點(diǎn)E,延長A1A2到A3 , 使A2A3=A2E,得到第3個(gè)△A2A3E,…按此做法繼續(xù)下去,則第n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(4,-5)關(guān)于x軸對稱點(diǎn)的坐標(biāo)為( 。
A.(4,5)
B.(-4,-5)
C.(-4,5)
D.(5,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD中有兩個(gè)動點(diǎn)P、Q,點(diǎn)P從點(diǎn)B出發(fā)沿BD作勻速運(yùn)動,到達(dá)D點(diǎn)后停止;同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),沿折線BC→CD作勻速運(yùn)動,P、Q兩個(gè)點(diǎn)的速度都為每秒1個(gè)單位長度,如果其中一點(diǎn)停止運(yùn)動,則另一點(diǎn)也停止運(yùn)動.設(shè)P、Q兩點(diǎn)的運(yùn)動時(shí)間為x秒,兩點(diǎn)之間的距離為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊含45°角的三角板的直角頂點(diǎn)靠在長尺(兩邊a∥b)的一邊b上,若∠1=30°,則三角板的斜邊與長尺的另一邊a的夾角∠2的度數(shù)為( )
A.10°
B.15°
C.30°
D.35°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com