如圖,E是正方形ABCD邊CD的中點,F(xiàn)是BC邊上一點,補充下列條件之一:①∠AED=∠CFE ②AE⊥FE ③BF:FC=3:1 ④AE:EF=2:1,能判定△ADE∽△EFC的個數(shù)有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
D
分析:根據(jù)已知及相似三角形的判定方法對各個條件進行分析即可得到答案.
解答:∵E是正方形ABCD邊CD的中點,
∴∠D=∠C=90°,
∴①∠AED=∠CFE,
∴相似;
②∵AE⊥FE,
∴∠AED+∠FEC=90°,∠DAE+∠AED=90°,
∴∠DAE=∠FEC,
∴相似;
③∵BF:FC=3:1,
∴FC:ED=EC:AD=1:2,
∴相似;
④∵AE:EF=2:1,
∴AE:EF=AD:EC=2:1,
∴相似.
故選D.
點評:此題考查了相似三角形的判定:①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,F(xiàn)、G是垂足,若正方形ABCD周長為a,則EF+EG等于(  )
A、
1
4
a
B、
1
2
a
C、a
D、2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,已知△ABC中,AB=AC,點P是BC上的一點,PN⊥AC于點N,PM⊥AB于點M,CG⊥AB于點G點.
(1)則CG、PM、PN三者之間的數(shù)量關(guān)系是
 
;
(2)如圖②,若點P在BC的延長線上,則PM、PN、CG三者是否還有上述關(guān)系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;
(3)如圖③,AC是正方形ABCD的對角線,AE=AB,點P是BE上任一點,PN⊥AB于點N,PM⊥AC于點M,猜想PM、PN、AC有什么關(guān)系;(直接寫出結(jié)論)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,ABCD是正方形,P是對角線BD上一點,過P點作直線EF、GH分別平行于AB、BC,交兩組對邊于E、F、G、H,則四邊形PEDG,四邊形PHBF都是正方形,四邊形PEAH、四邊形PGCF都是矩形,設(shè)正方形PEDG的邊長是a,正方形PHBF的邊長是b. 請動手實踐并得出結(jié)論:
(1)請你動手測量一些線段的長后,計算正方形PEDG與正方形PHBF的面積之和以及矩形PEAH與矩形PGCF的面積之和.
(2)你能根據(jù)(1)的結(jié)果判斷a2+b2與2ab的大小嗎?
(3)當(dāng)點P在什么位置時,有a2+b2=2ab?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖四邊形AOBC是正方形,點C的坐標(biāo)是(4
2
,0),動點P、Q同時從點O出發(fā),點P沿著折線OACB的方向運動;點Q沿著折線OBCA的方向運動,設(shè)運動時間為t.
(1)求出經(jīng)過O、A、C三點的拋物線的解析式.
(2)若點Q的運動速度是點P的2倍,點Q運動到邊BC上,連接PQ交AB于點R,當(dāng)AR=3
2
時,請求出直線PQ的解析式.
(3)若點P的運動速度為每秒1個單位長度,點Q的運動速度為每秒2個單位長度精英家教網(wǎng),兩點運動到相遇停止.設(shè)△OPQ的面積為S.請求出S關(guān)于t的函數(shù)關(guān)系式以及自變量t的取值范圍.
(4)判斷在(3)的條件下,當(dāng)t為何值時,△OPQ的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AC是正方形ABCD的對角線,點O是AC的中點,點Q是AB上一點,連接CQ,DP⊥CQ于點E,交BC于精英家教網(wǎng)點P,連接OP,OQ;
求證:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

同步練習(xí)冊答案