【題目】某市開展“環(huán)境治理留住青山綠水,綠色發(fā)展贏得金山銀山”活動,對其周邊的環(huán)境污染進行綜合治理.年對、兩區(qū)的空氣量進行監(jiān)測,將當月每天的空氣污染指數(shù)(簡稱:)的平均值作為每個月的空氣污染指數(shù),并將年空氣污染指數(shù)繪制如下表.據(jù)了解,空氣污染指數(shù)時,空氣質(zhì)量為優(yōu):空氣污染指數(shù)時,空氣質(zhì)量為良:空氣污染指數(shù)時,空氣質(zhì)量為輕微污染.

月份

地區(qū)

區(qū)

區(qū)

1)請求出兩區(qū)的空氣污染指數(shù)的平均數(shù);

2)請從平均數(shù)、眾數(shù)、中位數(shù)、方差等統(tǒng)計量中選兩個對區(qū)、區(qū)的空氣質(zhì)量進行有效對比,說明哪一個地區(qū)的環(huán)境狀況較好.

【答案】1A區(qū)的的空氣污染指數(shù)的平均數(shù)是79,B區(qū)的的空氣污染指數(shù)的平均數(shù)是80;(2)A區(qū)

【解析】

1)根據(jù)平均數(shù)的計算公式分別進行計算即可;

2)根據(jù)平均數(shù)和眾數(shù)的定義先求出各地區(qū)的平均數(shù)和眾數(shù),再進行比較即可得出答案.

1A區(qū)的空氣污染指數(shù)的平均數(shù)是:115+108+85+100+95+50+80+70+50+50+100+45=79

B區(qū)的空氣污染指數(shù)的平均數(shù)是:105+95+90+80+90+60+90+85+60+70+90+45=80

2)∵A區(qū)的眾數(shù)是50,B區(qū)的眾數(shù)是90,

A地區(qū)的環(huán)境狀況較好.

A區(qū)的平均數(shù)小于B區(qū)的平均數(shù),

A區(qū)的環(huán)境狀況較好.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,點EAB上,DEC90°

1)求證:ADE∽△BEC

2)若AD1,BC3,AE2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=120°,OABC的外接圓,點P上的一個動點.

(1)求∠AOC的度數(shù);

(2)若⊙O的半徑為2,設(shè)點P到直線AC的距離為x,圖中陰影部分的面積為y,求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.\

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要從數(shù)學(xué)競賽初賽成績相同的四名學(xué)生(其中2名男生,2名女生)中,隨機選出2名學(xué)生去參加決賽,則選出的2名學(xué)生恰好為1名男生和1名女生的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的頂點坐標分別是,,.過點的直線相交于點.若的面積比為,則點的坐標為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,矩形中,,,點邊上的一動點(點、點不重合),四邊形沿折疊得邊形,延長于點

圖① 圖②

1)求證:

2)如圖②,若點恰好在的延長線上時,試求出的長度;

3)當時,求證:是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,Rt△ABC 的三個頂點分別是 A(﹣4,2),B(﹣1,4),C(﹣1,2).

(1)將△ABC 以點 C 為旋轉(zhuǎn)中心旋轉(zhuǎn) 180°,畫出旋轉(zhuǎn)后對應(yīng)的△,的坐標為 ;

(2)平移△ABC,點 B 的對應(yīng)點 的坐標為(4,﹣1),畫出平移后對應(yīng)的△,的坐標為 ;

(3)若將△繞某一點旋轉(zhuǎn)可以得到△,請直接寫出旋轉(zhuǎn)中心的坐標 為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象經(jīng)過點,且與正比例函數(shù)的圖象交于點,點的橫坐標是

1)求一次函數(shù)的函數(shù)解析式;

2)根據(jù)圖象,寫出當時,自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,若將PAC繞點A逆時針旋轉(zhuǎn)后得到P′AB.

(1)求點P與點P′之間的距離;

(2)求∠APB的大。

查看答案和解析>>

同步練習(xí)冊答案