【題目】如圖1,在矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,將∠MPN繞點(diǎn)P從PB處開(kāi)始順時(shí)針?lè)较蛐D(zhuǎn),PM交邊AB于點(diǎn)E,PN交邊AD于點(diǎn)F,當(dāng)PE旋轉(zhuǎn)至PA處時(shí),∠MPN的旋轉(zhuǎn)隨即停止.
(1)如圖2,在旋轉(zhuǎn)中發(fā)現(xiàn)當(dāng)PM經(jīng)過(guò)點(diǎn)A時(shí),PN也經(jīng)過(guò)點(diǎn)D,求證:△ABP ∽△PCD
(2)如圖3,在旋轉(zhuǎn)過(guò)程中,的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由
(3)設(shè)AE,連結(jié)EF,則在旋轉(zhuǎn)過(guò)程中,當(dāng)為何值時(shí),△BPE與△PEF相似.
【答案】(1)見(jiàn)解析;(2)的值是定值,該定值為 ;(3)當(dāng)或時(shí),△BPE與△PEF相似
【解析】
(1)因?yàn)樵诰匦沃,所以只要再證明∠BAP=∠CPD即可;(2)證明邊比為定值,考慮相似三角形,過(guò)點(diǎn)F作FG⊥BC于G,創(chuàng)造△PGF并證明其與△EBP 相似;(3)使△BPE ∽△PFE,那么,算出m值,反證相似.
(1)證明:∵四邊形ABCD是矩形
∴∠B=∠C=90°
∴∠BAP+∠BPA=90°
∵∠MPN=90°
∴∠CPD+∠BPA=90°
∴∠BAP=∠CPD
∴△ABP ∽△PCD
(2)過(guò)點(diǎn)F作FG⊥BC于G
∴∠FGP=90°
∴∠FGP=∠B,∠PFG+∠FPG=90°
易知四邊形ABGF是矩形,
∴FG=AB=2
∵∠MPN=90°
∴∠EPB+∠FPG=90°
∴∠EPB=∠FPG
∴△EBP ∽△PGF
∴
∴的值是定值,該定值為
(3)∵AE
∴BE
①當(dāng)時(shí),
∵∠B=∠EPF=90°
∴△BPE ∽△PFE
∴
∴
∴
②當(dāng)時(shí),
∵∠B=∠EPF=90°
∴△BPE ∽△PEF
∴
∴
∴
綜上,當(dāng)或時(shí),△BPE與△PEF相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過(guò)A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長(zhǎng)分別是一元二次方程x2﹣14x+48=0的兩個(gè)實(shí)數(shù)根.
(1)求C點(diǎn)坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的方格中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(﹣2,﹣1),B(﹣1,﹣3),△O1A1B1與△OAB是關(guān)于點(diǎn)P為位似中心的位似圖形.
(1)在圖中標(biāo)出位似中心P的位置,并寫出點(diǎn)P的坐標(biāo)及△O1A1B1與△OAB的相似比;
(2)以原點(diǎn)O為位似中心,在y軸的左側(cè)畫出△OAB的另一個(gè)位似△OA2B2,使它與△OAB的相似比為2:1,并寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B2的坐標(biāo).
(3)△OA2B2的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 與x軸只有一個(gè)交點(diǎn),且交點(diǎn)為A(-2,0).
(1)求b,c的值;
(2)若拋物線與y軸的交點(diǎn)為B,坐標(biāo)原點(diǎn)為O,求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)求出該函數(shù)圖象的頂點(diǎn)坐標(biāo),對(duì)稱軸,圖象與軸、軸的交點(diǎn)坐標(biāo);
(2)在什么范圍內(nèi)時(shí),隨的增大而增大?當(dāng)在什么范圍內(nèi)時(shí),隨的增大而減。
(3)當(dāng)在什么范圍內(nèi)時(shí),?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=﹣(x+1)2﹣2
(1)指出函數(shù)圖象的開(kāi)口方向是 ,對(duì)稱軸是 ,頂點(diǎn)坐標(biāo)為
(2)當(dāng)x 時(shí),y隨x的增大而增大
(3)怎樣移動(dòng)拋物線y=﹣x2就可以得到拋物線y=﹣(x+1)2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣6mx+9m2+n(m,n為常數(shù))
(1)若n=﹣4,這個(gè)函數(shù)圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A,B分別在x軸的正、負(fù)半軸),與y軸交于點(diǎn)C,試求△ABC面積的最大值;
(2)若n=4m+4,當(dāng)x軸上的動(dòng)點(diǎn)Q到拋物線的頂點(diǎn)P的距離最小值為4時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖 1,已知正方形 ABCD,點(diǎn) E 在 BC 上,點(diǎn) F 在 DC 上,且∠EAF=45°,則有 BE+DF= .若 AB=4,則△CEF 的周長(zhǎng)為 .
(2)如圖 2,四邊形 ABCD 中,∠BAD=∠C=90°,AB=AD,點(diǎn) E,F 分別在 BC,CD 上,且∠EAF=45°,試判斷 BE,EF,DF 之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com