【題目】定義一種變換:平移拋物線得到拋物線,使經(jīng)過的頂點.設(shè)的對稱軸分別交于點,點是點關(guān)于直線的對稱點.
(1)如圖1,若:,經(jīng)過變換后,得到:,點的坐標為,則①的值等于______________;
②四邊形為( )
A.平行四邊形 B.矩形 C.菱形 D.正方形
(2)如圖2,若:,經(jīng)過變換后,點的坐標為,求的面積;
(3)如圖3,若,經(jīng)過變換后,,點是直線上的動點,求點到點的距離和到直線的距離之和的最小值.
【答案】(1)-2;D;(2)2;(3).
【解析】
試題分析:(1)已知F2的解析式,把已知坐標代入即可得出b的值;
(2)在(1)的基礎(chǔ)上求出S△ABD;
(3)要分情況討論點C在點A的左邊還是右邊,作PH⊥AD交AD于點H,則PD+PH=PB+PH,是PB+PH值最小可求出h的最小值.
試題解析:(1)-2;D;
(2)∵F2:y=a(x-2)2+c-1,
而A(0,c)在F2上,可得a=.
∴DB=(4a+c)-(c-1)=2,
∴S△ABD=2;
(3)當點C在點A的右側(cè)時(如圖1),
設(shè)AC與BD交于點N,
拋物線y=x2-x+,配方得y=(x-1)2+2,
其頂點坐標是A(1,2),
∵AC=2,
∴點C的坐標為(1+2,2).
∵F2過點A,
∴F2解析式為y=(x-1-)2+1,
∴B(1+,1),
∴D(1+,3)
∴NB=ND=1,
∵點A與點C關(guān)于直線BD對稱,
∴AC⊥DB,且AN=NC
∴四邊形ABCD是菱形.
∴PD=PB.
作PH⊥AD交AD于點H,則PD+PH=PB+PH.
要使PD+PH最小,即要使PB+PH最小,
此最小值是點B到AD的距離,即△ABD邊AD上的高h.
∵DN=1,AN=,DB⊥AC,
∴∠DAN=30°,
故△ABD是等邊三角形.
∴h=AD=∴最小值為.
當點C在點A的左側(cè)時(如圖2),同理,最小值為.
綜上,點P到點D的距離和到直線AD的距離之和的最小值為.
科目:初中數(shù)學 來源: 題型:
【題目】自2014年12月28日北京公交地鐵調(diào)價以來,人們的出行成本發(fā)生了較大的變化. 小林根據(jù)新聞,將地鐵和公交車的票價繪制成了如下兩個表格。(說明:表格中“6~12公里”指的是大于6公里,小于等于12公里,其他類似)
|
|
根據(jù)以上信息回答下列問題:
小林辦了一張市政交通一卡通學生卡,目前乘坐地鐵沒有折扣。
(1)如果小林全程乘坐地鐵的里程為14公里,用他的學生卡需要刷卡交費________元;
(2)如果小林全程乘坐公交車的里程為16公里,用他的學生卡需要刷卡交________元;
(3)小林用他的學生卡乘坐一段地鐵后換乘公交車,兩者累計里程為12公里。已知他乘坐地鐵平均每公里花費0.4元,乘坐公交車平均每公里花費0.25元,此次行程共花費4.5元。請問小林乘坐地鐵和公交車的里程分別是多少公里?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+8與x軸、y軸分別相交于點A、B,設(shè)M是OB上一點,若將△ABM沿AM折疊,使點B恰好落在x軸上的點B′處.求:
(1)點B′的坐標;
(2)直線AM所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A為數(shù)軸上表示﹣3的點,當點A沿數(shù)軸移動4個單位長度時,它所表示的數(shù)是( )
A. 1 B. ﹣7 C. 1或﹣7 D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)在實施居民用水額定管理前,對居民生活用水情況進行了調(diào)查,下表是通過簡單隨機抽樣獲得的50個家庭去年月平均用水量(單位:噸),并將調(diào)查數(shù)據(jù)進行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
分組 | 劃記 | 頻數(shù) |
2.0<x≤3.5 | 正正 | 11 |
3.5<x≤5.0 | 19 | |
5.0<x≤6.5 6.5<x≤8.0 | ||
8.0<x≤9.5 合計 | 2 50 |
(1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)從直方圖中你能得到什么信息?(寫出兩條即可);
(3)為了鼓勵節(jié)約用水,要確定一個用水量的標準,超出這個標準的部分按1.5倍價格收費,若要使60%的家庭收費不受影響,你覺得家庭月均用水量應(yīng)該定為多少?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A. 0既不是正數(shù),也不是負數(shù) B. ﹣1是最大的負整數(shù)
C. ﹣a一定是負數(shù) D. 倒數(shù)等于它本身的數(shù)有1和﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com