已知拋物線y=x2+mx-
14
m2(m>0)與x軸交于A、B兩點.
(1)求證:拋物線的對稱軸在y軸的左側;
(2)設拋物線與y軸交于點C,若∠ACB=90°,求m的值.
分析:(1)證明拋物線的對稱軸-
b
2a
<0即可證明拋物線的對稱軸在y軸的左側;
(2)先設出拋物線與x軸的交點坐標為A(x1,0),B(x2,0),根據(jù)的x1與x2關系確定x1,x2異號,再設出C點坐標,利用射影定理可得CO2=AO•BO,進而得到關于m的方程,解可得答案.
解答:解:(1)證明:∵m>0,
∴x=-
b
2a
=-
m
2
<0,
∴拋物線的對稱軸在y軸的左側;

(2)設拋物線與x軸的交點坐標為A(x1,0),B(x2,0),
則x1+x2=-m<0,x1•x2=-
1
4
m2<0,
∴x1,x2異號,
當x=0時,y=-
1
4
m2
,
∴拋物線與y軸交點坐標為C(0,-
1
4
m2
),
∴OC=
1
4
m2
,OA•OB=-x1•x2=
1
4
m2
,
∵∠ACB=90°,AC⊥AB,
∴CO2=AO•BO,
∴(
1
4
m2
2=
1
4
m2
,
解得:m=±2,
∵m>0,
∴m=2.
點評:此題主要考查了二次函數(shù)的性質,一元二次方程根與系數(shù)的關系,拋物線與坐標軸的交點問題,題目難度不大,綜合性較強,是各地中考的熱點和難點,解題時注意數(shù)形結合數(shù)學思想的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側;
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
(3)設(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為(  )

查看答案和解析>>

同步練習冊答案