如圖,□ABCD中,過(guò)點(diǎn)B作BG∥AC,在BG上取一點(diǎn)E,連結(jié)DE交AC的延長(zhǎng)線于點(diǎn)F.

(1)求證:DF=EF;

(2)如果AD=2,∠ADC=60°,AC⊥DC于點(diǎn)C,AC=2CF,求BE的長(zhǎng).

 

【答案】

(1)連結(jié)BD交AC于點(diǎn)O,根據(jù)平行四邊形的性質(zhì)可得OB=OD,再根據(jù)等分線段成比例的性質(zhì)求解即可;(2)

【解析】

試題分析:(1)連結(jié)BD交AC于點(diǎn)O,根據(jù)平行四邊形的性質(zhì)可得OB=OD,再根據(jù)等分線段成比例的性質(zhì)求解即可;

(2)由AC⊥DC,AD=2,∠ADC=60°可得AC=,由OF是△DBE的中位線可得BE=2OF,即可得到BE=2OC+2CF,再根據(jù)平行四邊形的性質(zhì)求解即可.

(1)連結(jié)BD交AC于點(diǎn)O

∵四邊形ABCD是平行四邊形

∴OB=OD  

∵BG∥AC 

∴DF=EF;

(2)∵AC⊥DC,AD=2,∠ADC=60°,

∴AC=

∵OF是△DBE的中位線  

∴BE="2OF"

∵OF=OC+CF  

∴BE=2OC+2CF  

∵四邊形ABCD是平行四邊形

∴AC=2OC,

∵AC=2CF 

∴BE=2AC=.

考點(diǎn):平行四邊形的判定與性質(zhì)

點(diǎn)評(píng):平行四邊形的判定與性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考常見(jiàn)題,一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC,BD相交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說(shuō)法不正確的是( 。
A、當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過(guò)程中,線段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時(shí),四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長(zhǎng)CE交BA的延長(zhǎng)線于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•浙江)如圖,?ABCD中,對(duì)角線AC和BD交于點(diǎn)O,過(guò)O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長(zhǎng)為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案