【題目】某保溫杯專賣店通過市場調(diào)研,準備銷售、兩種型號的保溫杯,其中每件種保溫杯的進價比種保溫杯的進價高20元,已知專賣店用3200元購進種保溫杯的數(shù)量與用2560元購進種保溫杯的數(shù)量相同.
(1)求兩種保溫杯的進價;
(2)若種保溫杯的售價為250元,種保溫杯的售價為180元,專賣店共進兩種保溫杯200個,設(shè)種保溫杯進貨個,求該專賣店獲得的總利潤 (元)與種保溫杯進貨數(shù) (個)之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
【答案】(1)A種保溫杯的進價為100元,B種保溫杯的進價為80元;(2),
【解析】
(1)設(shè)B種保溫杯的進價為x元,則A種保溫杯的進價為元,根據(jù)用3200元購進種保溫杯的數(shù)量與用2560元購進種保溫杯的數(shù)量相同列分式方程求解即可;
(2)根據(jù)總利潤 (元)等于A種保溫杯的利潤加上B種保溫杯的利潤求解即可.
解:(1)設(shè)B種保溫杯的價格為x元,則A種保溫杯的價格為元,由題意得:
解得:
經(jīng)檢驗,是分式方程的根
當時,(元)
∴A種保溫杯的進價為100元,B種保溫杯的進價為80元;
(2)由題意得:
A種保溫杯的利潤為:;
B種保溫杯的利潤為:
∴總利潤 (元)
∴
∴自變量m的取值范圍是:.
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設(shè)運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD 中,AB=4,E為CD上一動點,連接AE交BD于F,過F作FH⊥AE于F,過H 作HG⊥BD 于 G.則下列結(jié)論:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周長為 8.其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD中,點E、F分別為邊AB、BC上的點,連接CE、DF相交于點G,CE=DF.
(1)如圖①,求證:DF⊥CE;
(2)如圖②,連接BD,取BD的中點O,連接OE、OF、EF,求證:△OEF為等腰直角三角形
(3)如圖③,在(2)的條件下,將△CBE和△DCF分別沿CB、DC翻折到△CBM和△DCN的位置,連接OM、ON、MN,若AE=2BE,ON=,求EG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某瓜果基地市場部為指導該基地某種蔬菜的生產(chǎn)銷售,在對歷年市場行情和生產(chǎn)情況進行調(diào)查的基礎(chǔ)上,對今年這種蔬菜上市后的市場售價和生產(chǎn)成本進行了預測,提供了兩個方面的信息,如圖所示.注:兩圖中的每個實心點所對應(yīng)的縱坐標分別指相應(yīng)月份的售價和成本,生產(chǎn)成本6月份最低,圖甲的圖象是線段,圖乙的圖象是拋物線.
請你根據(jù)圖象提供的信息說明:
(1)在3月份出售這種蔬菜,每千克的收益是多少元?(收益=售價﹣成本)
(2)哪個月出售這種蔬菜,每千克的收益最大?說明理由;
(3)已知市場部銷售該種蔬菜,4、5兩個月的總收益為48萬元,且5月份的銷量比4月份的銷量多2萬公斤,求4、5兩個月銷量各多少萬公斤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工程隊承擔了100米的道路改造工程任務(wù),在確保工程質(zhì)量的前提下,實際施工時每天改造道路比原計劃多10米,結(jié)果提前5天完成了任務(wù),求原計劃平均每天改造道路多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點B的橫坐標為x,設(shè)點C的縱坐標為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為40元,若銷售價為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當?shù)慕祪r措施,以擴大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件設(shè)每件童裝降價x元時,平均每天可盈利y元.
寫出y與x的函數(shù)關(guān)系式;
當該專賣店每件童裝降價多少元時,平均每天盈利400元?
該專賣店要想平均每天盈利600元,可能嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com