(2012•南昌)已知(m-n)2=8,(m+n)2=2,則m2+n2=( 。
分析:根據(jù)完全平方公式由(m-n)2=8得到m2-2mn+n2=8①,由(m+n)2=2得到m2+2mn+n2=2②,然后①+②得,2m2+2n2=10,變形即可得到m2+n2的值.
解答:解:∵(m-n)2=8,
∴m2-2mn+n2=8①,
∵(m+n)2=2,
∴m2+2mn+n2=2②,
①+②得,2m2+2n2=10,
∴m2+n2=5.
故選C.
點(diǎn)評(píng):本題考查了完全平方公式:(a±b)2=a2±2ab+b2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)已知關(guān)于x的一元二次方程x2+2x-a=0有兩個(gè)相等的實(shí)數(shù)根,則a的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)已知一次函數(shù)y=kx+b(k≠0)經(jīng)過(2,-1)、(-3,4)兩點(diǎn),則它的圖象不經(jīng)過(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)如圖,已知二次函數(shù)L1:y=x2-4x+3與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左邊),與y軸交于點(diǎn)C.
(1)寫出二次函數(shù)L1的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo);
(2)研究二次函數(shù)L2:y=kx2-4kx+3k(k≠0).
①寫出二次函數(shù)L2與二次函數(shù)L1有關(guān)圖象的兩條相同的性質(zhì);
②若直線y=8k與拋物線L2交于E、F兩點(diǎn),問線段EF的長(zhǎng)度是否發(fā)生變化?如果不會(huì),請(qǐng)求出EF的長(zhǎng)度;如果會(huì),請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌)已知,紙片⊙O的半徑為2,如圖1,沿弦AB折疊操作.
(1)①折疊后的
AB
所在圓的圓心為O′時(shí),求O′A的長(zhǎng)度;
     ②如圖2,當(dāng)折疊后的
AB
經(jīng)過圓心為O時(shí),求
AOB
的長(zhǎng)度;
     ③如圖3,當(dāng)弦AB=2時(shí),求圓心O到弦AB的距離;
(2)在圖1中,再將紙片⊙O沿弦CD折疊操作.
①如圖4,當(dāng)AB∥CD,折疊后的
AB
CD
所在圓外切于點(diǎn)P時(shí),設(shè)點(diǎn)O到弦AB、CD的距離之和為d,求d的值;
②如圖5,當(dāng)AB與CD不平行,折疊后的
AB
CD
所在圓外切于點(diǎn)P時(shí),設(shè)點(diǎn)M為AB的中點(diǎn),點(diǎn)N為CD的中點(diǎn),試探究四邊形OMPN的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案