【題目】周末,小凱和同學帶著皮尺,去測量楊大爺家露臺遮陽蓬的寬度,如圖,由于無法直接測量,小凱便在樓前面的地面上選擇了一條直線EF,通過在直線EF上選點觀測,發(fā)現(xiàn)當他位于N點時,他的視線從M點通過露臺D點正好落在遮陽蓬A點處:當他位于Q點時,視線從P點通過露臺D點正好落在遮陽蓬B點處,這樣觀測到兩個點A,B間的距離即為遮陽蓬的寬.已知ABCDEF,點CAG上,AG、DE、PQ、MN均為垂直于EF,MN=PQ,露臺的寬CD=GE,測得GE=5米,EN=13.2米,QN=6.2,請你根據(jù)以上信息,求出遮陽蓬的寬AB是多少米?(結(jié)果精確到0.01米)

【答案】2.35

【解析】

如圖,延長MPDEH,根據(jù)CD//MH可得∠ADC=DMH,即可證明ACDDMH,可得,根據(jù)AB//PM可得ABDMPD,可得,進而可得答案.

延長MPDEH,

MH=NE=13.2米,CD=EG=5米,PM=QN=6.2米,

CD//MH,

∴∠ADC=DMH,

又∵∠ACD=DHM=90°,

ACDDMH,

AB//PM

ABDMPD,

,

=

AB==≈2.35()

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是二次函數(shù)圖象的一部分,其對稱軸是,且過點,下列說法:;;是拋物線上兩點,則,其中正確的有  

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知一個二次函數(shù)的圖象經(jīng)過、三點.

1)求拋物線的解析式;

2)求拋物線的對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖所示,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3, 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標是( ).

A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、BC在半徑為2的圓O上,且∠BAC=60°,作OMAB于點M,ONAC于點N,連接MN,則MN的長為(

A. 1B. C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究

1)如圖①,在正方形ABCD內(nèi),請畫出使∠BPC=90°的所有點P

2)如圖②,已知矩形ABCD,AB=9,BC=10,在矩形ABCD內(nèi)(含邊)畫出使∠BPC=60°的所有點P,并求出APD面積的最大值;

3)隨著社會發(fā)展,農(nóng)業(yè)觀光園走進了我們的生活,某農(nóng)業(yè)觀光園的平面示意圖如圖3所示的四邊形ABCD,其中∠A=120°,∠B=C=90°,AB=km,BC=6km,觀光園的設計者想在園中找一點P,使得點P與點A、B、CD所連接的線段將整個觀光園分成四個區(qū)域,用來進行不同的設計與規(guī)劃,從實用和美觀的角度他們還要求在BPC的區(qū)域內(nèi)∠BPC=120°,且APD的區(qū)域面積最小,試問在四邊形ABCD內(nèi)是否存在這樣的點P,使得∠BPC=120°,且APD面積最小?若存在,請你在圖中畫出點P點的位置,并求出APD的最小面積.若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC和△DEF是兩個等腰直角三角形,∠A=∠D90°,△DEF的頂點E位于邊BC的中點上.

1)如圖1,設DEAB交于點MEFAC交于點N,求證:△BEM∽△CNE;

2)如圖2,將△DEF繞點E旋轉(zhuǎn),使得DEBA的延長線交于點M,EFAC交于點N,于是,除(1)中的一對相似三角形外,能否再找出一對相似三角形并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的頂點都在小方格的格點上.

1)點A的坐標是 ;點C的坐標是 ;

2)以原點O為位似中心,將△ABC縮小,使變換后得到的△A1B1C1與△ABC對應邊的比為12,請在網(wǎng)格中畫出△A1B1C1;

3)△A1B1C1的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD的內(nèi)部,將AF延長后交邊BC于點G,且,則的值為__

查看答案和解析>>

同步練習冊答案