如圖,⊙O為△BCD的外接圓,過C點作⊙O的切線交BD的延長線于A,∠ACB=75°,∠ABC=45°,則
CD
DB
的值為(  )
A.
3
2
B.2C.
2
D.
2
2
設(shè)圓的半徑為r,連接OB,OC,OD,
∵AC為⊙O的切線,
∴∠DCA=∠CBD=45°,
∴∠BCD=∠BCA-∠DCA=75-45=30°,
∴∠BOD=2∠BCD=60°,
∴△BOD是等邊三角形,BD=r,
∵∠CBD=45°,
∴∠COD=90°,
∴CD=
2
OC=
2
r,
CD
DB
=
2

故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙A與y軸交于C、D兩點,圓心A的坐標(biāo)為(1,0),⊙A的半徑為
5
,過C作⊙A的切線交x軸于點B.
(1)求切線BC的解析式;
(2)若點P是第一象限內(nèi)⊙A上的一點,過點P作⊙A的切線與直線BC相交于點G,且∠CGP=120°,求點G的坐標(biāo);
(3)向左移動⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動過程中是否存在點A,使△AEF是直角三角形?若存在,求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,BD是⊙O的直徑,AB與⊙O相切于點B,過點D作OA平行線交⊙O于點C,AC與BD的延長線相交于點E.
(1)試探究AE與⊙O的位置關(guān)系,并說明理由;
(2)已知EC=a,ED=b,AB=c,請你思考后,選用以上適當(dāng)?shù)臄?shù)據(jù),計算⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知PAB、PCD為⊙O的兩條割線,PA=8,AB=10,CD=7,∠P=60°,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠D=30°,
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,求
BC
的長.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

同學(xué)們都學(xué)習(xí)過《幾何》課本第三冊第199頁的第11題,它是這樣的:
如圖,A為⊙O的直徑EF上的一點,OB是和這條直徑垂直的半徑,BA和⊙O相交于另一點C,過點C的切線和EF的延長線相交于點D,求證:DA=DC.

(1)現(xiàn)將圖1中的直徑EF所在直線進(jìn)行平行移動到圖2所示的位置,此時OB與EF垂直相交于H,其它條件不變.
①求證:DA=DC;
②當(dāng)DF:EF=1:8,且DF=
2
時,求AB•AC的值.
(2)將圖2中的EF所在直線繼續(xù)向上平行移動到圖3所示的位置,使EF與OB的延長線垂直相交于H,A為EF上異于H的一點,且AH小于⊙O的切線交EF于D,試猜想:DA=DC是否仍然成立?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,平行四邊形ABCD的對角線AC,BD交于點P,E為BC的中點,過E點的圓O與BD相切于點P,圓O與直線AC,BC分別交于點F,G.
(1)求證:△PCD△EPF;
(2)如果AB=AD,AC=6,BD=8(如圖2).求圓O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB切⊙O于點B,OA=2
3
,AB=3,弦BCOA,則劣弧BC的弧長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為______.

查看答案和解析>>

同步練習(xí)冊答案