精英家教網 > 初中數學 > 題目詳情

矩形紙片ABCD中,AB=5,AD=3,將紙片折疊,使點B落在邊CD上的B′處,折痕為AE.在折痕AE上存在一點P到邊CD的距離與到點B的距離相等,則此相等距離為 ▲  ;

 

解析:如圖所示,設PF⊥CD,

∵BP=FP,

由翻折變換的性質可得BP=B′P,

∴FP=B′P,

∴FP⊥CD,

∴B′,F,P三點構不成三角形,

∴F,B′重合分別延長AE,DC相交于點G,

∵AB平行于CD,

∴∠BAG=∠AGC,

∵∠BAG=∠B′AG,AGC=∠B′AG,

∴GB′=AB′=AB=5,

∵PB′(PF)⊥CD,

∴PB′∥AD,

∴△ADG∽△PB′G,

∵Rt△ADB′中,AB′=5,AD=3,

∴DB′=4,DG=DB′+B′G=4+5=9,

∴△ADG與△PB′G的相似比為9:5,

∴AD:PB′=9:5,

∵AD=3,

∴PB′=,即相等距離為

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形紙片ABCD中,AB=3cm,BC=4cm,若要在該紙片中剪下兩個外切的圓⊙O1和⊙O2,要求⊙O1和⊙O2的圓心均在對角線BD上,且⊙O1和⊙O2分別與BC、AD相切,則O1O2的長為( 。
A、
5
3
cm
B、
5
2
cm
C、
15
8
cm
D、2cm

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點D與點B重合,折痕為EF,那么折痕EF的長為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在矩形紙片ABCD中,將矩形紙片沿著對角線AC折疊,使點D落在點F處,設AF與BC相交于點E.
(1)試說明△ABE≌△CFE;(2)若AB=6,AD=8,求AE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,矩形紙片ABCD中,AD=14cm,AB=10cm.
(1)將矩形紙片ABCD沿折線AE對折,使AB邊與AD邊重合,B點落在F點處,如圖②所示,再剪去四邊形CEFD,余下部分如圖③所示,若將余下的紙片展開,則所得的四邊形ABEF的形狀是
 
,它的面積為
 
cm2;
(2)將圖③中的紙片沿折線AG對折,使AF與AE邊重合,F點落在H點處.如圖④所示,再沿HG將△HGE剪下,余下的部分如圖⑤所示,把圖⑤的紙片完全展開,請你在圖⑥的矩形ABCD中畫出展開后圖形的示意圖,剪去的部分用陰影表示,折痕用虛線表示;
(3)求圖④中剪去的△HGE的展開圖的面積(結果用含有根式的式子表示).
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•龍巖)如圖①,在矩形紙片ABCD中,AB=
3
+1,AD=
3

(1)如圖②,將矩形紙片向上方翻折,使點D恰好落在AB邊上的D′處,壓平折痕交CD于點E,則折痕AE的長為
6
6
;
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點F,則四邊形B′FED′的面積為
3
-
1
2
3
-
1
2
;
(3)如圖④,將圖②中的△AED′繞點E順時針旋轉α角,得△A′ED″,使得EA′恰好經過頂點B,求弧D′D″的長.(結果保留π)

查看答案和解析>>

同步練習冊答案