【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,ABC的三個頂點都在格點上,點A的坐標(biāo)(4,4),請解答下列問題:

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點A1、B1、C1的坐標(biāo);

(2)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點AA2的路徑長.

【答案】(1)如圖見解析;A1(﹣4,4)、B1(﹣1,1)、C1(﹣3,1);(2)

【解析】試題分析:1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點關(guān)于軸的對稱點 A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出坐標(biāo)即可;
2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點繞點C逆時針旋轉(zhuǎn)90°的對應(yīng)點的位置,然后順次連接即可,根據(jù)弧長公式求出點AA2的路徑長.

試題解析:1)如圖所示, 即為所求,

2)如圖所示, 即為所求,

∴點AA2的路徑長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程ax22a1x+a2=0a0).

1)求證:方程有兩個不相等的實數(shù)根;

2)設(shè)方程的兩個實數(shù)根分別為x1,x2(其中x1x2).若y是關(guān)于a的函數(shù),且y=ax2x1,求這個函數(shù)的表達式;

3)將(2)中所得的函數(shù)的圖象在直線a=2的左側(cè)部分沿直線a=2翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象直接寫出:當(dāng)關(guān)于a的函數(shù)y=2a+b的圖象與此圖象有兩個公共點時,b的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在昆明市軌道交通的修建中,規(guī)劃在A、B兩地修建一段地鐵,點B在點A的正東方向,由于A、B之間建筑物較多,無法直接測量,現(xiàn)測得古樹C在點A的北偏東45°方向上,在點B的北偏西60°方向上,BC=400m,請你求出這段地鐵AB的長度.(結(jié)果精確到1m,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)有5張寫著不同數(shù)字的卡片,請按要求完成下列問題:

若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______

若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______

若從中取出4張卡片,請運用所學(xué)的計算方法,寫出兩個不同的運算式,使四個數(shù)字的計算結(jié)果為24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子里裝有3個黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來數(shù)的前提下,小明為估計其中白球數(shù),采用如下辦法:隨機從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機摸出一球,記下顏色,不斷重復(fù)上述過程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計口袋中白球大約有( )

A. 10B. 12 C. 15 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是( 。

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級所有女生的身高統(tǒng)計數(shù)據(jù)如下表,請回答下列問題:

(1) 這個學(xué)校八年級共有多少女生?

(2) 身高在 的女生有多少人?

(3) 一女生的身高恰好為 ,哪一組包含這個身高?這一組出現(xiàn)的頻數(shù)、頻率各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的0經(jīng)過點D,E是O上一點,且AED=45°,

1求證:CD是O的切線

2O的半徑為3,AE=5,求DAE的正弦值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADDF,ECDF,∠1=∠3,∠2=∠4,求證:AEDF.(請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由)

證明:∵ADDF,ECDF,(已知)

∴∠BFD=∠ADF90°.(

EC∥(

∴∠EBA_____(兩直線平行,內(nèi)錯角相等)

∵∠2=∠4,(已知)

∴∠EBA=∠4.(等量代換)

AB_____.(

∴∠2+ADC180°.(

∴∠2+ADF+3180°

∵∠1=∠3.(已知)

∴∠2+ADF+1180°.(等量代換)

_____+ADF180°

AEDF.(

查看答案和解析>>

同步練習(xí)冊答案