【題目】⊙O是△ABC的外接圓,AB是直徑,過的中點(diǎn)P作⊙O的直徑PG,與弦BC相交于點(diǎn)D,連接AG、CP、PB.
(1)如圖1,求證:AG=CP;
(2)如圖2,過點(diǎn)P作AB的垂線,垂足為點(diǎn)H,連接DH,求證:DH∥AG;
(3)如圖3,連接PA,延長HD分別與PA、PC相交于點(diǎn)K、F,已知FK=2,△ODH的面積為2,求AC的長.
【答案】(1)證明見解析;
(2)證明見解析;
(3)AC=10
【解析】
試題分析:(1)利用等弧所對的圓周角相等即可求解;
(2)利用等弧所對的圓周角相等,得到角相等∠APG=∠CAP,判斷出△BOD≌△POH,再得到角相等,從而判斷出線平行;
(3)由三角形相似,得出比例式,△HON∽△CAM,,再判斷出四邊形CDHM是平行四邊形,最后經(jīng)過計(jì)算即可求解.
試題解析:(1)∵過的中點(diǎn)P作⊙O的直徑PG,
∴CP=PB,
∵AB,PG是相交的直徑,
∴AG=PB,
∴AG=CP;
(2)證明:如圖 2,連接BG
∵AB、PG都是⊙O的直徑,
∴四邊形AGBP是矩形,
∴AG∥PB,AG=PB,
∵P是弧BC的中點(diǎn),
∴PC=BC=AG,
∴弧AG=弧CP,
∴∠APG=∠CAP,
∴AC∥PG,
∴PG⊥BC,
∵PH⊥AB,
∴∠BOD=90°=∠POH,
在△BOD和△POH中,
,
∴△BOD≌△POH,
∴OD=OH,
∴∠ODH=(180°﹣∠BOP)=∠OPB,
∴DH∥PB∥AG.
(3)如圖3,作CM⊥AP于M,ON⊥DH于N,
∴∠HON=∠BOP=∠COP=∠CAP,
∴△HON∽△CAM,
∴,
作PQ⊥AC于Q,
∴四邊形CDPQ是矩形,
△APH與△APQ關(guān)于AP對稱,
∴HQ⊥AP,
由(1)有:HK⊥AP,
∴點(diǎn)K在HQ上,
∴CK=PK,
∴PK是△CMP的中位線,
∴CM=2FK=4,MF=PF,
∵CM⊥AP,HK⊥AP,
∴CM∥HK,
∴∠BCM+∠CDH=180°,
∵∠BCM=∠CAP=∠BAP=∠PHK=∠MHK,
∴∠MHK+∠CDH=180°,
∴四邊形CDHM是平行四邊形,
∴DH=CM=4,DN=HN=2,
∵S△ODH=DH×ON=×4×ON=2,
∴ON=,
∴OH==5,
∴AC==10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售某種商品,成本為30元/件,當(dāng)銷售價(jià)格為60元件/時(shí),每天可售出100件,經(jīng)市場調(diào)查發(fā)現(xiàn),銷售單價(jià)每降1元,每天銷量增加10件.當(dāng)銷售單價(jià)為__________元時(shí),每天獲取的利潤最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道 是無理數(shù),其整數(shù)部分是1,于是小明用 ﹣1米表示 的小數(shù)部分.請解答:
(1)如果 的小數(shù)部分為a, +2的整數(shù)部分為b,求a+b﹣ 的值;
(2)已知10+ =x+y,其中x是整數(shù),且0<y<1,求x﹣y的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知線段AB的兩個(gè)端點(diǎn)坐標(biāo)分別為A(a,1),B(﹣2,b),且滿足 + =0.
(1)則a= , b=;
(2)在y軸上是否存在點(diǎn)C,使三角形ABC的面積等于8?若存在,請求出點(diǎn)C的坐標(biāo);若不存在,請說明理由;
(3)如圖2,將線段BA平移得到線段OD,其中B點(diǎn)對應(yīng)O點(diǎn),A點(diǎn)對應(yīng)D點(diǎn),點(diǎn)P(m,n)是線段OD上任意一點(diǎn),求證:3n﹣2m=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)(1)班為了籌備演講比賽,準(zhǔn)備用200元錢購買日記本和鋼筆兩種獎(jiǎng)品(兩種都要買),其中日記本10元/本,鋼筆l5元/支,在錢全部用完的條件下,購買的方案共有( )
A. 4種B. 5種C. 6種D. 7種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過坐標(biāo)原點(diǎn)O,點(diǎn)A(6,﹣6),且以y軸為對稱軸.
(1)求拋物線的解析式;
(2)如圖2,過點(diǎn)B(0,﹣)作x軸的平行線l,點(diǎn)C在直線l上,點(diǎn)D在y軸左側(cè)的拋物線上,連接DB,以點(diǎn)D為圓心,以DB為半徑畫圓,⊙D與x軸相交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)),連接CN,當(dāng)MN=CN時(shí),求銳角∠MNC的度數(shù);
(3)如圖3,在(2)的條件下,平移直線CN經(jīng)過點(diǎn)A,與拋物線相交于另一點(diǎn)E,過點(diǎn)A作x軸的平行線m,過點(diǎn)(﹣3,0)作y軸的平行線n,直線m與直線n相交于點(diǎn)S,點(diǎn)R在直線n上,點(diǎn)P在EA的延長線上,連接SP,以SP為邊向上作等邊△SPQ,連接RQ,PR,若∠QRS=60°,線段PR的中點(diǎn)K恰好落在拋物線上,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com