【題目】已知關(guān)于x的二次函數(shù)y=(x﹣h)2+3,當1≤x≤3時,函數(shù)有最小值2h,則h的值為( )
A.
B. 或2
C. 或6
D.2、 或6
【答案】C
【解析】解:∵y=(x﹣h)2+3中a=1>0, ∴當x<h時,y隨x的增大而減;當x>h時,y隨x的增大而增大;
①若1≤h≤3,
則當x=h時,函數(shù)取得最小值2h,即3=2h,
解得:h= ;
②若h<1,則在1≤x≤3范圍內(nèi),x=1時,函數(shù)取得最小值2h,
即(1﹣h)2+3=2h,
解得:h=2>1(舍去);
③若h>3,則在1≤x≤3范圍內(nèi),x=3時,函數(shù)取得最小值2h,
即(3﹣h)2+3=2h,
解得:h=2(舍)或h=6,
綜上,h的值為 或6,
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)的最值的相關(guān)知識,掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+6分別與x軸、y軸交于點E,F(xiàn),已知點E的坐標為(﹣8,0),點A的坐標為(﹣6,0).
(1)求k的值;
(2)若點P(x,y)是該直線上的一個動點,且在第二象限內(nèi)運動,試寫出△OPA的面積S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
(3)探究:當點P運動到什么位置時,△OPA的面積為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列一元一次方程解應用題:
社會是一個重要的學校和課堂,生活是一種重要的課程和教材,實踐是一種重要的學習方式和途徑.參加社會生活和社會實踐,不僅可以學到很多在課堂上學不到的東西,也可以把課堂上學到的理論知識同社會實踐聯(lián)系起來,加深對課堂學習內(nèi)容的理解,我區(qū)某校七年級學生在農(nóng)場進行社會實踐活動時,采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:
(1)求采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BD為△ABC的角平分線請按如下要求操作與解答:
(1)過點D畫DE∥BC交AB于點E.若∠A=68°,∠AED=42°,求△BCD各內(nèi)角的度數(shù);
(2)畫△ABC的角平分線CF交BD于點M,若∠A=60°,請找出圖中所有與∠A相等的角,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學九年級學生共450人,其中男生250人,女生200人.該校對九年級所有學生進行了一次體育測試,并隨機抽取了50名男生和40名女生的測試成績作為樣本進行分析,繪制成如下的統(tǒng)計表:
(1)請解釋“隨機抽取了50名男生和40名女生”的合理性;
(2)從上表的“頻數(shù)”、“百分比”兩列數(shù)據(jù)中選擇一列,用適當?shù)慕y(tǒng)計圖表示;
(3)估計該校九年級學生體育測試成績不及格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN(如圖)在圖中平移,直角邊MN⊥BC,頂點M、N分別在邊AD、BC上,延長NM到點Q,使QM=PB.若BC=10,CD=3,則當點M從點A平移到點D的過程中,點Q的運動路徑長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角三角形ABC中,若AB=16cm,AC=12cm,BC=20cm.點P從點A開始以2厘米/秒的速度沿A→B→C的方向移動,點Q從點C開始以1厘米/秒的速度沿C→A→B的方向移動,如果點P、Q同時出發(fā),用t(秒)表示移動時間,那么:
(1)如圖1,請用含t的代數(shù)式表示,①當點Q在AC上時,CQ= ;②當點Q在AB上時,AQ= ;
③當點P在AB上時,BP= ;④當點P在BC上時,BP= .
(2)如圖2,若點P在線段AB上運動,點Q在線段CA上運動,當QA=AP時,試求出t的值.
(3)如圖3,當P點到達C點時,P、Q兩點都停止運動,當AQ=BP時,試求出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為直角邊,A為直角頂點,在AD左側(cè)作等腰直角三角形ADF,連接CF,AB=AC,∠BAC=90°.
(1)當點D在線段BC上時(不與點B重合),線段CF和BD的數(shù)量關(guān)系與位置關(guān)系分別是什么?請給予證明.
(2)當點D在線段BC的延長線上時,(1)的結(jié)論是否仍然成立?請在圖2中畫出相應的圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)榕樹和香樟樹的單價各是多少?
(2)根據(jù)學校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵數(shù)不少于榕樹的1.5倍,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com