如圖,已知二次函數(shù)y=x2+bx+c過點(diǎn)A(1,0),C(0,﹣3).

(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為10,請求出出點(diǎn)P的坐標(biāo).

(1);(2)(-4,5)或(2,5)

解析試題分析:(1)利用待定系數(shù)法把A(1,0),C(0,-3)代入二次函數(shù)中,即可算出b、c的值,進(jìn)而得到函數(shù)的解析式;
(2)首先求出A、B兩點(diǎn)坐標(biāo),再算出AB的長,再設(shè)P(m,n),根據(jù)△ABP的面積為10可以計(jì)算出n的值,然后再利用二次函數(shù)解析式計(jì)算出m的值即可得到P點(diǎn)坐標(biāo).
試題解析:(1)∵二次函數(shù)過點(diǎn)A(1,0),C(0,-3),
,解得
∴二次函數(shù)的解析式為;
(2)∵當(dāng)時, ,解得,;
∴A(1,0),B(-3,0),
∴AB=4,
設(shè)P(m,n),
∵△ABP的面積為10,
•AB•|n|=10,解得
當(dāng)時,,解得或2,
∴P(-4,5)(2,5);
當(dāng)時,,方程無解,
故P(-4,5)或(2,5).
考點(diǎn):1.待定系數(shù)法求二次函數(shù)解析式;2.二次函數(shù)的性質(zhì)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù)的圖象如圖所示,根據(jù)圖象解答下列問題:

(1)寫出方程的兩個根.
(2)寫出不等式的解集.
(3)寫出的增大而減小的自變量的取值范圍.
(4)若方程有兩個不相等的實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,平面直角坐標(biāo)系中,以點(diǎn)C(2,)為圓心,以2為半徑的圓與軸交于A、B兩點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若二次函數(shù)的圖象經(jīng)過點(diǎn)A、B,試確定此二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線經(jīng)過(0,-1),(3,2)兩點(diǎn).求它的解析式及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點(diǎn);
(2)拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,若,求拋物線的表達(dá)式;
(3)以(2)中的拋物線上一點(diǎn)P(m,n)為圓心,1為半徑作圓,直接寫出:當(dāng)m取何值時,x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y1=ax2+bx-3的圖象經(jīng)過點(diǎn)A(2,-3),B(-1,0),與y軸交于點(diǎn)C,與x軸另一交點(diǎn)交于點(diǎn)D.

(1)求二次函數(shù)的解析式;
(2)求點(diǎn)C、點(diǎn)D的坐標(biāo);
(3)若一條直線y2,經(jīng)過C、D兩點(diǎn),請直接寫出y1>y2時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商品的進(jìn)價為每千克40元,銷售單價與月銷售量的關(guān)系如下表(每千克售價不能高于65元):

銷售單價(元)
50
53
56
59
62
65
月銷售量(千克)
420
360
300
240
180
120
該商品以每千克50元為售價,在此基礎(chǔ)上設(shè)每千克的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每千克商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個等級(等級越高,質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護(hù)眼燈,一級產(chǎn)品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個等級的護(hù)眼燈,每個等級每天生產(chǎn)的臺數(shù)如下表表示:

等級(x級)
一級
二級
三級

生產(chǎn)量(y臺/天)
78
76
74

(1)已知護(hù)眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),請直接寫出與之間的函數(shù)關(guān)系式:_____;
(2)每臺護(hù)眼燈可獲利z(元)關(guān)于等級x(級)的函數(shù)關(guān)系式:______;
(3)若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)哪一等級的護(hù)眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長線交拋物線于點(diǎn)D(5,2),連結(jié)BC、AD.

(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;(6分)
(2)將△BCH繞點(diǎn)B按順時針旋轉(zhuǎn)90°后再沿x軸對折得到△BEF(點(diǎn)C與點(diǎn)E對應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;(4分)
(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q.問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由. (4分)

查看答案和解析>>

同步練習(xí)冊答案