如圖,已知一次函數(shù)y1=-x+a與x軸、y軸分別交于點(diǎn)D、C兩點(diǎn)和反比例函數(shù)交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3)點(diǎn)B的坐標(biāo)是(3,m)
(1)求a,k,m的值;
(2)求C、D兩點(diǎn)的坐標(biāo),并求△AOB的面積.
【答案】分析:(1)由于已知一次函數(shù)y1=-x+a和反比例函數(shù)交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3),把A的坐標(biāo)代入反比例函數(shù)解析式中即可確定k的值,然后利用解析式即可確定點(diǎn)B的坐標(biāo),最后利用A或B坐標(biāo)即可確定a的值;
(2)利用(1)中求出的直線的解析式可以確定C,D的坐標(biāo),然后利用面積的割補(bǔ)法可以求出△AOB的面積.
解答:解:(1)∵反比例函數(shù)經(jīng)過A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3),
∴3=,
∴k=3,
而點(diǎn)B的坐標(biāo)是(3,m),
∴m==1,
∵一次函數(shù)y1=-x+a經(jīng)過A點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3),
∴3=-1+a,
∴a=4;

(2)∵y1=-x+4,
當(dāng)x=0時(shí),y=4,
當(dāng)y=0時(shí),x=4,
∴C的坐標(biāo)為(0,4),D的坐標(biāo)為(4,0),
∴S△AOB=S△COB-S△COA=×4×3-×4×1=4.
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和函數(shù)圖象中的面積問題,求面積體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解圖形幾何意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=
ax
的圖象交于A(2,4)和精英家教網(wǎng)B(-4,m)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出,當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=-
8x
的圖象交于A,B點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.求:
(1)求A、B兩點(diǎn)坐標(biāo);
(2)求一次函數(shù)的解析式;
(3)根據(jù)圖象直接寫出使一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
(4)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新疆)如圖,已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=
mx
的圖象交于A(2,4)、B(-4,n)兩點(diǎn).
(1)分別求出y1和y2的解析式;
(2)寫出y1=y2時(shí),x的值;
(3)寫出y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=k1x+b經(jīng)過A、B兩點(diǎn),將點(diǎn)A向上平移1個(gè)單位后剛好在反比例函數(shù)y=
k2x
上.
(1)求出一次函數(shù)解析式.
(2)求出反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)y=
4-2m
x
的圖象交于點(diǎn)A、B,交x軸于點(diǎn)C.
(1)求m的取值范圍;
(2)若點(diǎn)A的坐標(biāo)是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函數(shù)的解析式;
(3)根據(jù)圖象,寫出當(dāng)反比例函數(shù)的值小于一次函數(shù)的值時(shí)x 的取值范圍?

查看答案和解析>>

同步練習(xí)冊(cè)答案