【題目】已知:關(guān)于x的方程x2+(8﹣4m)x+4m2=0
(1)若方程有兩個相等的實數(shù)根,求m的值,并求出此時方程的根;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的平方和等于136?若存在,請求出滿足條件的m值;若不存在,請說明理由.

【答案】
(1)解:∵方程x2+(8﹣4m)x+4m2=0有兩個相等實根,

∴△=(8﹣4m)2﹣4×1×4m2=64﹣64m=0,

解得:m=1,

∴原方程為x2+4x+4=0,

解得:x1=x2=﹣2.

答:m的值為1,此方程的根為﹣2


(2)解:假設(shè)存在,設(shè)方程兩根為x1,x2,

則有x1+x2=4m﹣8,x1x2=4m2,

= ﹣2x1x2=(4m﹣8)2﹣2×4m2=8m2﹣64m+64=136,

解得:m1=﹣1,m2=9.

∵方程有實數(shù)根,

∴△=(8﹣4m)2﹣4×1×4m2=64﹣64m≥0,

∴m≤1,

∴m的值為﹣1.


【解析】(1)根據(jù)方程有兩個相等的實數(shù)根結(jié)合根的判別式即可得出關(guān)于m的一元一次方程,解方程即可得出m的值,再將其代入原方程解方程即可求出方程的根;(2)假設(shè)存在,設(shè)方程兩根為x1 , x2 , 根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=4m﹣8、x1x2=4m2 , 結(jié)合 =136即可得出關(guān)于m的一元二次方程,解方程即可得出m的值,再由方程有解即可得出△=64﹣64m≥0,解不等式即可確定m的值,此題得解.
【考點精析】關(guān)于本題考查的求根公式和根與系數(shù)的關(guān)系,需要了解根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4 , ∠BAD=60°,且AB>4

(1)求∠EPF的大小。
(2)若AP=6,求AE+AF的值。
(3)若△EFP的三個頂點E、F、P分別在線段AB、AD、AC上運動,請直接寫出AP長的最大值和最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某倉儲中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上

(1)求斜坡AB的水平寬度BC。
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運送,當BF=3.5m時,求點D離地面的高。(≈2.236,結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,且點A(0,2),點C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經(jīng)過點B.

(1)求點B的坐標;
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x的一元二次方程(k﹣1)x2+4x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是(
A.k<5
B.k<5,且k≠1
C.k≤5,且k≠1
D.k>5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,…,如此作下去,則△B2015A2016B2016的頂點A2016的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過點A(﹣1,0),B(5,﹣6),C(6,0).

(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點Q為拋物線的對稱軸上的一個動點,試指出△QAB為等腰三角形的點Q一共有幾個?并請求出其中某一個點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三個小球上分別標有數(shù)字﹣2,﹣1,3,它們除數(shù)字外其余全部相同,現(xiàn)將它們放在一個不透明的袋子里,從袋子中隨機地摸出一球,將球上的數(shù)字記錄,記為m,然后放回;再隨機地摸取一球,將球上的數(shù)字記錄,記為n,這樣確定了點(m,n).
(1)請列表或畫出樹狀圖,并根據(jù)列表或樹狀圖寫出點(m,n)所有可能的結(jié)果;
(2)求點(m,n)在函數(shù)y=﹣ 的圖象上的概率.

查看答案和解析>>

同步練習冊答案