10、已知⊙O1的半徑為3cm,⊙O2的半徑為4cm,并且⊙O1與⊙O2相切,那么這兩個圓的圓心距為(  )
分析:相切分為外切和內(nèi)切,所以分兩種情況求解.外切時,圓心距=半徑之和;內(nèi)切時,圓心距=半徑之差.
解答:解:∵⊙O1與⊙O2相切,
∴有外切和內(nèi)切兩種情形:
當(dāng)外切時,圓心距=3+4=7(cm);
當(dāng)內(nèi)切時,圓心距=4-3=1(cm).
故選D.
點評:此題考查相切兩圓的性質(zhì).外切時,圓心距=半徑之和;內(nèi)切時,圓心距=半徑之差.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、已知⊙O1的半徑為R,⊙O2的半徑為r,兩圓的圓心距為d,d<R+r,則兩圓的位置關(guān)系為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O1的半徑為4cm,⊙O2的半徑為1cm,兩圓的圓心距為6cm,那么兩圓的外公切線長為
 
cm,連心線與外公切線的夾角為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、已知⊙O1的半徑為3cm,⊙O2的半徑為7cm,若⊙O1和⊙O2的公共點不超過1個,則兩圓的圓心距不可能為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)已知⊙O1的半徑為2cm,⊙Q2的半徑為5cm,兩圓相切,則兩圓的圓心距O1Q2的長為
3或7
3或7
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•自貢)已知⊙O1的半徑為2cm,⊙O2的半徑為3cm,圓心O1,O2的距離為4cm,則兩圓的位置關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊答案