(2009•荊州二模)如圖①,在Rt△ABC中,∠A=90°,AB=AC,BC=
4,另有一個(gè)等腰梯形DEFG(GF‖DE)的底邊DE與BC重合,兩腰分別落在AB、AC上,且G、F分別是AB、AC的中點(diǎn),P點(diǎn)為AG上的一動(dòng)點(diǎn).
(1)填空:等腰梯形DEFG的面積為
6
6
(2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF′G′(如圖②).
探究1:設(shè)在運(yùn)動(dòng)過(guò)程中△ABC與等腰梯形DEF′G′重疊部分的面積為y,直接寫(xiě)出y與x的函數(shù)關(guān)系式和自變量x的取值范圍;
探究2:在運(yùn)動(dòng)過(guò)程中,四邊形BDG′G能否是菱形?若能,設(shè)過(guò)動(dòng)點(diǎn)P且平分此菱形面積的直線交GF于去,當(dāng)
S△PGQ=時(shí),求P點(diǎn)的位置;若不能,請(qǐng)說(shuō)明理由.