兩塊完全相同的直角三角板ABC和DEF如圖1所示放置,點(diǎn)C、F重合,且BC、DF在一條直線上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不動(dòng),讓Rt△DEF沿CB向左平移,直到點(diǎn)F和點(diǎn)B重合為止.設(shè)FC=x,兩個(gè)三角形重疊陰影部分的面積為y.
(1)如圖2,求當(dāng)x=
1
2
時(shí),y的值是多少?
(2)如圖3,當(dāng)點(diǎn)E移動(dòng)到AB上時(shí),求x、y的值;
(3)求y與x之間的函數(shù)關(guān)系式.

(1)如圖1:AB=DE=5,∵FC=x=
1
2
.∴DC=DF-FC=
7
2

∵tanD=
GC
DC
=
EF
DF
=
3
4
,∴GC=
21
8

∴y=
1
2
(EF+GC)•FC=
45
32


(2)當(dāng)點(diǎn)E運(yùn)動(dòng)到AB上時(shí),如圖2;
∵tanB=
EF
BF
=
AC
BC
=
4
3
,∴BF=
9
4

∴x=FC=BC-BF=
3
4

∵DC=DF-FC=
13
4
,
GC
DC
=
3
4

∴GC=
39
16

∴y=
1
2
(EF+GC)•FC=
261
128


(3)本題分兩種情況:
①當(dāng)0<x≤
3
4
時(shí),如圖3;DC=4-x;
∵tanD=
GC
DC
=
EF
DF
=
3
4
,∴GC=3-
3
4
x.
∴y=
1
2
(EF+GC)•FC=-
3
8
x2+3x.
②當(dāng)
3
4
<x≤3時(shí);如圖4;y=S梯形EFCG-S△EHQ
由①知,梯形EFCG的面積為-
3
8
x2+3x.
∵tanB=
QF
BF
=
AC
CB
=
4
3
,BF=3-x,
∴QF=4-
4
3
x.
∴EQ=3-QF=
4
3
x-1.
∵S△DEF=6,Rt△EHQRt△EFD.
∴S△EHQ:S△EFD=(EQ:ED)2
∴S△EHQ=
6
25
4
3
x-1)2;
∴y=S梯形EFCG-S△EHQ=-
3
8
x2+3x-
6
25
4
3
x-1)2=-
481
600
x2+
91
25
x-
6
25

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一家電腦公司推出一款新型電腦,投放市場(chǎng)以來(lái)的利潤(rùn)情況可以看做是拋物線的一部分,請(qǐng)結(jié)合下面的圖象解答以下問(wèn)題:
(1)求該拋物線對(duì)應(yīng)的二次函數(shù)的解析式;
(2)該公司在經(jīng)營(yíng)此款電腦過(guò)程中,第幾個(gè)月的利潤(rùn)最大,最大利潤(rùn)是多少;
(3)若照此經(jīng)營(yíng)下去,請(qǐng)你結(jié)合所學(xué)的知識(shí),對(duì)公司在此款電腦的經(jīng)營(yíng)狀況(是否虧損何時(shí)虧損)作出預(yù)測(cè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖一次函數(shù)y=
1
2
x+1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B;二次函數(shù)y=
1
2
x2+bx+c的圖象與一次函數(shù)y=
1
2
x+1的圖象交于B、C兩點(diǎn),與x軸交于D、E兩點(diǎn)且D點(diǎn)坐標(biāo)為(1,0).
(1)求二次函數(shù)的解析式;
(2)求四邊形BDEC的面積S;
(3)在x軸上是否存在點(diǎn)P,使得△PBC是以P為直角頂點(diǎn)的直角三角形?若存在,求出所有的點(diǎn)P,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過(guò)點(diǎn)B(-2,3),原點(diǎn)O和x軸上另一點(diǎn)A,它的對(duì)稱軸與x軸交于點(diǎn)C(2,0).
(1)求此拋物線的函數(shù)關(guān)系式;
(2)連接CB,在拋物線的對(duì)稱軸上找一點(diǎn)E,使得CB=CE,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,連接BE,設(shè)BE的中點(diǎn)為G,在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得△PBG的周長(zhǎng)最小?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y1=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,1),且經(jīng)過(guò)點(diǎn)B(
5
2
3
4
),拋物線對(duì)稱軸左側(cè)與x軸交于點(diǎn)A,與y軸相交于點(diǎn)C.
(1)求拋物線解析式y(tǒng)1和直線BC的解析式y(tǒng)2;
(2)連接AB、AC,求△ABC的面積.
(3)根據(jù)圖象直接寫(xiě)出y1<y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-2x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-3,0)和點(diǎn)B(0,6).
(1)求此二次函數(shù)的解析式;
(2)將這個(gè)二次函數(shù)的圖象向右平移5個(gè)單位后的頂點(diǎn)設(shè)為C,直線BC與x軸相交于點(diǎn)D,求∠ABD的正弦值;
(3)在第(2)小題的條件下,聯(lián)結(jié)OC,試探究直線AB與OC的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一直線y1=x+b與拋物線y2=x2+c的交點(diǎn)為A(3,5)和B.
(1)求出b、c和點(diǎn)B的坐標(biāo);
(2)畫(huà)出草圖,根據(jù)圖象同答:當(dāng)x在什么范圍時(shí)y1≤y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明代表班級(jí)參加校運(yùn)會(huì)的鉛球項(xiàng)目,他想:“怎樣才能將鉛球推得更遠(yuǎn)呢”,于是找來(lái)小剛做了如下的探索:小明手摯鉛球在控制每次推出時(shí)用力相同的條件下,分別沿與水平線成30°、45°、60°方向推了三次.鉛球推出后沿拋物線形運(yùn)動(dòng).如圖,小明推鉛球時(shí)的出手點(diǎn)距地面2m,以鉛球出手點(diǎn)所在豎直方向?yàn)閥軸、地平線為x軸建立直角坐標(biāo)系,分別得到的有關(guān)數(shù)據(jù)如下表:
鉛球的方向與水平線的夾角300450600
鉛球運(yùn)行所得到的拋物線解析式y1=-0.06(x-3)2+2.5y2=
______(x-4)2+3.6
y3=-0.22(x-3)2+4
估測(cè)鉛球在最高點(diǎn)的坐標(biāo)P1(3,2.5)P2(4,3.6)P3(3,4)
鉛球落點(diǎn)到小明站立處的水平距離9.5m

______m
7.3m
(1)請(qǐng)你求出表格中兩橫線上的數(shù)據(jù),寫(xiě)出計(jì)算過(guò)程,并將結(jié)果填入表格中的橫線上;
(2)請(qǐng)根據(jù)以上數(shù)據(jù),對(duì)如何將鉛球推得更遠(yuǎn)提出你的建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線AB、CD分別經(jīng)過(guò)點(diǎn)(0,1)和(0,2)且平行于x軸,圖1中射線OA為正比例函數(shù)y=kx(k>0)在第一象限的部分圖象,射線OB與OA關(guān)于y軸對(duì)稱;圖2為二次函數(shù)y=ax2(a>0)的圖象.
(1)如圖l,求證:
AB
CD
=
1
2
;
(2)如圖2,探索:
AB
CD
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案