已知:關(guān)于x的方程x2+3x-m=0的兩個實數(shù)根的平方和等于11.求證:關(guān)于x的方程(k-3)x2+kmx-m2+6m-4=0有實數(shù)根.
【答案】分析:設(shè)方程x2+3x-m=0的兩根為x1,x2,根據(jù)根與系數(shù)的關(guān)系得x1+x2=-3,x1•x2=-m,由x12+x22=11,變形得(x1+x22-2x1•x2=11,則9+2m=11,解得m=1,把m=1代入(k-3)x2+kmx-m2+6m-4=0得(k-3)x2+kx+1=0,討論:當k=3,方程變形為3x+1=0,解得x=-;當k≠3,△=k2-4(k-3)=k2-4k+12=(k-2)2+8>0,則k無論為何實數(shù),關(guān)于x的方程(k-3)x2+kmx-m2+6m-4=0有實數(shù)根.
解答:解:設(shè)方程x2+3x-m=0的兩根為x1,x2,則x1+x2=-3,x1•x2=-m,
∵x12+x22=11,
∴(x1+x22-2x1•x2=11,
∴9+2m=11,解得m=1,
且m=1,方程x2+3x-m=0有兩個實數(shù)根,
∴m=1,
把m=1代入(k-3)x2+kmx-m2+6m-4=0得(k-3)x2+kx+1=0,
當k=3,方程變形為3x+1=0,解得x=-,
當k≠3,△=k2-4(k-3)=k2-4k+12=(k-2)2+8,
∵(k-2)2≥0,
∴(k-2)2+8>0,
∴k≠3時,方程有兩個不等實數(shù)根,
∴關(guān)于x的方程(k-3)x2+kmx-m2+6m-4=0有實數(shù)根.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系:若方程的兩根為x1,x2,則x1+x2=-,x1•x2=.也考查了一元二次方程的根的判別式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實數(shù)量,方程總有實數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實數(shù)范圍內(nèi),對于x的同一個值,這兩個函數(shù)所對應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過點(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、已知:關(guān)于x的方程x2+2x=3-4k有兩個不相等的實數(shù)根(其中k為實數(shù))
(1)則k的取值范圍是
k<1
;
(2)若k為非負整數(shù),則此時方程的根是
-3或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、已知:關(guān)于x的方程x2-kx-2=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程ax2-(1-3a)x+2a-1=0,求證:a取任何實數(shù)時,方程ax2-(1-3a)x+2a-1=0總有實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的方程x2+kx-12=0,求證:方程有兩個不相等的實數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案