【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+cx軸交于A(﹣1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn).

(1)求拋物線的解析式和直線AC的解析式;

(2)請(qǐng)?jiān)?/span>y軸上找一點(diǎn)M,使BDM的周長(zhǎng)最小,求出點(diǎn)M的坐標(biāo);

(3)試探究:在拋物線上是否存在點(diǎn)P,使以點(diǎn)A,P,C為頂點(diǎn),AC為直角邊的三角形是直角三角形?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)拋物線解析式為y=﹣x2+2x+3;直線AC的解析式為y=3x+3;(2)點(diǎn)M的坐標(biāo)為(0,3);

(3)符合條件的點(diǎn)P的坐標(biāo)為()或(,﹣),

【解析】1)設(shè)交點(diǎn)式y=a(x+1)(x-3),展開(kāi)得到-2a=2,然后求出a即可得到拋物線解析式;再確定C(0,3),然后利用待定系數(shù)法求直線AC的解析式;

(2)利用二次函數(shù)的性質(zhì)確定D的坐標(biāo)為(1,4),作B點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)B′,連接DB′y軸于M,如圖1,則B′(-3,0),利用兩點(diǎn)之間線段最短可判斷此時(shí)MB+MD的值最小,則此時(shí)BDM的周長(zhǎng)最小,然后求出直線DB′的解析式即可得到點(diǎn)M的坐標(biāo);

(3)過(guò)點(diǎn)CAC的垂線交拋物線于另一點(diǎn)P,如圖2,利用兩直線垂直一次項(xiàng)系數(shù)互為負(fù)倒數(shù)設(shè)直線PC的解析式為y=-x+b,把C點(diǎn)坐標(biāo)代入求出b得到直線PC的解析式為y=-x+3,再解方程組得此時(shí)P點(diǎn)坐標(biāo);當(dāng)過(guò)點(diǎn)AAC的垂線交拋物線于另一點(diǎn)P時(shí),利用同樣的方法可求出此時(shí)P點(diǎn)坐標(biāo).

1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),

y=ax2﹣2ax﹣3a,

﹣2a=2,解得a=﹣1,

∴拋物線解析式為y=﹣x2+2x+3;

當(dāng)x=0時(shí),y=﹣x2+2x+3=3,則C(0,3),

設(shè)直線AC的解析式為y=px+q,

A(﹣1,0),C(0,3)代入得,解得,

∴直線AC的解析式為y=3x+3;

(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴頂點(diǎn)D的坐標(biāo)為(1,4),

B點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)B′,連接DB′y軸于M,如圖1,則B′(﹣3,0),

MB=MB′,

MB+MD=MB′+MD=DB′,此時(shí)MB+MD的值最小,

BD的值不變,

∴此時(shí)BDM的周長(zhǎng)最小,

易得直線DB′的解析式為y=x+3,

當(dāng)x=0時(shí),y=x+3=3,

∴點(diǎn)M的坐標(biāo)為(0,3);

(3)存在.

過(guò)點(diǎn)CAC的垂線交拋物線于另一點(diǎn)P,如圖2,

∵直線AC的解析式為y=3x+3,

∴直線PC的解析式可設(shè)為y=﹣x+b,

C(0,3)代入得b=3,

∴直線PC的解析式為y=﹣x+3,

解方程組,解得,則此時(shí)P點(diǎn)坐標(biāo)為(,);

過(guò)點(diǎn)AAC的垂線交拋物線于另一點(diǎn)P,直線PC的解析式可設(shè)為y=﹣x+b,

A(﹣1,0)代入得+b=0,解得b=﹣,

∴直線PC的解析式為y=﹣x﹣

解方程組,解得,則此時(shí)P點(diǎn)坐標(biāo)為(,﹣).

綜上所述,符合條件的點(diǎn)P的坐標(biāo)為,,﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ABC中,∠ACB=90°,AC=6cm,BC =8cm.點(diǎn)PA點(diǎn)出發(fā),沿路徑向終點(diǎn)B運(yùn)動(dòng),點(diǎn)QB點(diǎn)出發(fā),沿路徑向終點(diǎn)A運(yùn)動(dòng).點(diǎn)P Q分別的運(yùn)動(dòng)速度同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò)點(diǎn)PQPElE,QFlF.則點(diǎn)P運(yùn)動(dòng)多少秒時(shí),△PEC和△CFQ全等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC中,AB=BC=5,tanABC=

(1)求邊AC的長(zhǎng);

(2)設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A-4,1),B-1,3),C-2,0),將三角形ABC平移得到三角形DEF,使點(diǎn)A與點(diǎn)D1,-2)是對(duì)應(yīng)點(diǎn).

1)在圖中畫(huà)出三角形DEF,并寫(xiě)出點(diǎn)BC的對(duì)應(yīng)點(diǎn)E、F的坐標(biāo);

2)若點(diǎn)Px軸上,且知三角形PCD的面積等于三角形ABC面積的,請(qǐng)寫(xiě)出滿(mǎn)足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著一帶一路國(guó)際合作高峰論壇在北京舉行,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷(xiāo)往一帶一路沿線國(guó)家和地區(qū).已知甲種商品的銷(xiāo)售單價(jià)為900元,乙種商品的銷(xiāo)售單價(jià)為600元.

1)已知乙種商品的銷(xiāo)售量不能低于甲種商品銷(xiāo)售量的三分之一,則最多能銷(xiāo)售甲種商品多少萬(wàn)件?

2)在(1)的條件下,要使甲、乙兩種商品的銷(xiāo)售總收入不低于5700萬(wàn)元,請(qǐng)求甲種商品銷(xiāo)售量的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),2秒后,兩點(diǎn)相距16個(gè)單位長(zhǎng)度,已知?jiǎng)狱c(diǎn)AB的速度比為1:3(速度單位:1個(gè)單位長(zhǎng)度秒).

(1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)的速度;

(2)在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)2秒時(shí)的位置;

(3)若表示數(shù)0的點(diǎn)記為O,A、B兩點(diǎn)分別從(2)中標(biāo)出的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),再經(jīng)過(guò)多長(zhǎng)時(shí)間,滿(mǎn)足OB=2OA?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,ADBC邊上的中線,點(diǎn)EAC上,∠CDE25°,現(xiàn)將△CDE沿直線DE翻折得到△FDE,連接BF,則∠BFE的度數(shù)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC中,ACBC,ACB=90°,過(guò)點(diǎn)CCDAB于點(diǎn)D,點(diǎn)EAB邊上一動(dòng)點(diǎn)(不含端點(diǎn)AB),連接CE,過(guò)點(diǎn)BCE的垂線交直線CE于點(diǎn)F,交直線CD于點(diǎn)G.

(1)求證:AECG;

(2)若點(diǎn)E運(yùn)動(dòng)到線段BD上時(shí)(如圖②),試猜想AE,CG的數(shù)量關(guān)系是否發(fā)生變化,請(qǐng)寫(xiě)出你的結(jié)論;

(3)過(guò)點(diǎn)AAHCE,垂足為點(diǎn)H,并交CD的延長(zhǎng)線于點(diǎn)M(如圖③),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 ,ABC 的外角平分線 CP 和內(nèi)角平分線 BP 相交于點(diǎn) P,若∠BPC=25°,則∠CAP=__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案