【題目】解不等式組請結合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得____________________;

(Ⅱ)解不等式②,得_______________________;

III)把不等式①和②的解集在數(shù)軸上表示出來:

IV)原不等式組的解集為________________________.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)見解析;(Ⅳ).

【解析】

I)先移項合并,再未知數(shù)的系數(shù)化為1,即可得到不等式的解集;
II)先去括號,再移項合并,未知數(shù)的系數(shù)化為1即可得到不等式的解集;
III)根據(jù)求出每一個不等式的解集,將解集表示在數(shù)軸上表示出來;
IV)取不等式①②的解集的公共部分即可.

解:(.解不等式①,得 ;

故答案為:

)解不等式②,得;

故答案為: ,

III)把不等式①和②的解集在數(shù)軸上表示出來.如圖:

IV)原不等式組的解集為:

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中,裝有2個白球,1個紅球,1個黃球,這些球除顏色外都相同.請用列表法或畫樹形圖法求下列事件的概率:

(1)攪勻后從中任意摸出1個球,恰好是白球.

(2)攪勻后從中任意摸出2個球,2個都是白球.

(3)再放入幾個除顏色外都相同的黑球,攪勻后從中任意摸出1個球,恰好是黑球的概率為,求放入了幾個黑球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示一架水平飛行的無人機AB的尾端點A測得正前方的橋的左端點P的

俯角為α其中tanα=2,無人機的飛行高度AH為500米,橋的長度為1255米.

求點H到橋左端點P的距離;

若無人機前端點B測得正前方的橋的右端點Q的俯角為30°,求這架無人機的長度AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD.下列結論:①EG⊥FH,②四邊形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四邊形EFGH是菱形.其中正確的個數(shù)是 ( )

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A3,0),以A為圓心作⊙AY軸切于原點,與x軸的另一個交點為B,過B⊙A的切線l

1)以直線l為對稱軸的拋物線過點A及點C0,9),求此拋物線的解析式;

2)拋物線與x軸的另一個交點為D,過D⊙A的切線DE,E為切點,求此切線長;

3)點F是切線DE上的一個動點,當△BFD△EAD相似時,求出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A了解飛行員視力的達標率應使用抽樣調查

B一組數(shù)據(jù)3,6,6,7,9的中位數(shù)是6

C從2000名學生中選200名學生進行抽樣調查,樣本容量為2000

D一組數(shù)據(jù)1,2,3,4,5的方差是10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B.

(1)直接寫出拋物線L的解析式;

(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N.若BMN的面積等于1,求k的值;

(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1y軸交于點C,過點Cy軸的垂線交拋物線L1于另一點D.F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若PCDPOF相似,并且符合條件的點P恰有2個,求m的值及相應點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,∠B60°,AB4,DAB中點,CE平分∠ACB,∠DEC30°,則CE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為O的直徑,C是O上一點,過點C的直線交AB的延長線于點D,AEDC,垂足為E,F(xiàn)是AE與O的交點,AC平分BAE.

1求證:DE是O的切線;

2若AE=6,D=30°,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案