【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動時(shí)間t的值.
【答案】
(1)90
(2)解:如圖3,∠AOM﹣∠NOC=30°.
設(shè)∠AOC=α,由∠AOC:∠BOC=1:2可得
∠BOC=2α.
∵∠AOC+∠BOC=180°,
∴α+2α=180°.
解得 α=60°.
即∠AOC=60°.
∴∠AON+∠NOC=60°.①
∵∠MON=90°,
∴∠AOM+∠AON=90°.②
由②﹣①,得∠AOM﹣∠NOC=30°;
(3)(ⅰ)如圖4,當(dāng)直角邊ON在∠AOC外部時(shí),
由OD平分∠AOC,可得∠BON=30°.
因此三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°.
此時(shí)三角板的運(yùn)動時(shí)間為:
t=60°÷15°=4(秒).
(ⅱ)如圖5,當(dāng)直角邊ON在∠AOC內(nèi)部時(shí),
由ON平分∠AOC,可得∠CON=30°.
因此三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)240°.
此時(shí)三角板的運(yùn)動時(shí)間為:
t=240°÷15°=16(秒).
【解析】解:(1)由旋轉(zhuǎn)的性質(zhì)知,旋轉(zhuǎn)角∠MON=90°.
故答案是:90;
【考點(diǎn)精析】通過靈活運(yùn)用角的運(yùn)算和旋轉(zhuǎn)的性質(zhì),掌握角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來表示;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程 x2﹣4x﹣7=0 時(shí),需要將原方程化為( )
A. (x + 2)2 =11B. (x+2)2= 7
C. (x﹣2)2 =11D. (x﹣2)2= 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時(shí)小聰從B地出發(fā)向A地行走,如圖所示,相交于點(diǎn)P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時(shí)間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( 。
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是一名學(xué)生所做的4道練習(xí)題:①﹣22=4②a3+a3=a6③4m﹣4= ④(xy2)3=x3y6 , 他做對的個(gè)數(shù)( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知開口向上的拋物線y=ax2﹣2ax+3,在此拋物線上有A(﹣0.5,y1),B(2,y2)和C(3,y3)三點(diǎn),則y1,y2和y3的大小關(guān)系為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE,
填空:①∠AEB的度數(shù)為 ;
②線段AD、BE之間的數(shù)量關(guān)系是 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=900, 點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請判斷∠AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.
(3)解決問題如圖3,在正方形ABCD中,CD=.若點(diǎn)P滿足PD=1,且∠BPD=900,請直接寫出點(diǎn)A到BP的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com