對(duì)于半徑為r的⊙P及一個(gè)正方形給出如下定義:若⊙P上存在到此正方形四條邊距離都相等的點(diǎn),則稱⊙P是該正方形的“等距圓”.如圖1,在平面直角坐標(biāo)系xOy中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(2,4),頂點(diǎn)C、D在x軸上,且點(diǎn)C在點(diǎn)D的左側(cè).
(1)當(dāng)r=時(shí),
①在P1(0,-3),P2(4,6),P3,2)中可以成為正方形ABCD的“等距圓”的圓心的是_______________;
②若點(diǎn)P在直線上,且⊙P是正方形ABCD的“等距圓”,則點(diǎn)P的坐標(biāo)為_______________;
(2)如圖2,在正方形ABCD所在平面直角坐標(biāo)系xOy中,正方形EFGH的頂點(diǎn)F的坐標(biāo)為(6,2),頂點(diǎn)E、H在y軸上,且點(diǎn)H在點(diǎn)E的上方.
①若⊙P同時(shí)為上述兩個(gè)正方形的“等距圓”,且與BC所在直線相切,求⊙P 在y軸上截得的弦長(zhǎng);
②將正方形ABCD繞著點(diǎn)D旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,線段HF上沒有一個(gè)點(diǎn)能成為它的“等距圓”的圓心,則r的取值范圍是_______________.
(1)①P2,P3;②P(-4,6)或P(4,-2);(2)①;②

試題分析:(1)①②直接根據(jù)定義作答.
(2)①根據(jù)定義和直線與圓的位置關(guān)系求解即可;②根據(jù)定義列不等式求解即可.
試題解析:(1)①P2,P3
②P(-4,6)或P(4,-2).
(2)①∵⊙P同時(shí)為正方形ABCD與正方形EFGH的“等距圓”,
∴⊙P同時(shí)過正方形ABCD的對(duì)稱中心E和正方形EFGH的對(duì)稱中心I.
∴點(diǎn)P在線段EI的中垂線上.
∵A(2,4),正方形ABCD的邊CD在x軸上;F(6,2),正方形EFGH的邊HE在y軸上,
∴E(0,2),I(3,5).∴∠I EH=45°,
設(shè)線段EI的中垂線與y軸交于點(diǎn)L,與x軸交于點(diǎn)M,
∴△LIE為等腰直角三角形,LI⊥y軸,∴L(0,5),
∴△LOM為等腰直角三角形,LO=OM.∴M(5,0).
∴P在直線y=-x+5上.
∴設(shè)P(p,-p+5).
過P作PQ⊥直線BC于Q,連結(jié)PE,
∵⊙P與BC所在直線相切,∴PE=PQ.

解得:,.

∵⊙P過點(diǎn)E,且E點(diǎn)在y軸上,
∴⊙P在y軸上截得的弦長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果菱形的兩條對(duì)角線的長(zhǎng)分別為6cm和8cm,則此菱形的邊長(zhǎng)是       cm,面積是    cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,點(diǎn)E、F分別從A、D兩點(diǎn)同時(shí)出發(fā),以相同的速度作直線運(yùn)動(dòng).點(diǎn)E在線段AB上運(yùn)動(dòng),點(diǎn)F沿射線CD運(yùn)動(dòng),連結(jié)EF、AF、AC,EF分別交AD和AC 于點(diǎn)O、H.
(1)求證:EO=OF;
(2)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),EF=AC,在備用圖1中畫出圖形并說明理由;
(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),∠FAD=∠CAD,在備用圖2中畫出圖形并說明理由,此時(shí)設(shè)四邊形CDOH的面積為S,四邊形ABCF的面積為S,請(qǐng)直接寫出S:S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,點(diǎn)E、F分別在AD、BC邊上,且AE=CF.求證:
(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在矩形ABCD中,DC=,CF⊥BD分別交BD、AD于點(diǎn)E、F,連接BF.
(1)求證:△DEC∽△FDC;
(2)當(dāng)F為AD的中點(diǎn)時(shí),求sin∠FBD的值及BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在□ABCD中,E,F(xiàn)為BC上兩點(diǎn),且BE=CF,AF=DE.
求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知O是口ABCD對(duì)角線的交點(diǎn),△ABC的面積是3,則口ABCD的面積是(    )
A.3B.6C.9D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中,正確的是(  )
A.梯形的對(duì)角線相等B.菱形的對(duì)角線不相等
C.矩形的對(duì)角線不能互相垂直D.平行四邊形的對(duì)角線可以互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:F是平行四邊形ABCD中AB邊的中點(diǎn),E是BC邊上的任意一點(diǎn),,那么=_____。

查看答案和解析>>

同步練習(xí)冊(cè)答案