已知PAB、PCD都是⊙O的割線,且圓心O在AB上,若PA=4cm,PC=5cm,CD=3cm,那么⊙O的直徑是

[  ]

A.6cm
B.cm
C.cm
D.10cm
答案:A
解析:

由切割線定理得:PA·PB=PC·PD

∵圓心O在AB上

∴AB是⊙O的直徑

∵PA4cmPC5cm,CD3cm

∴PD=8

∴PB=10

∴AB=PB-PA=10-4=6

∴⊙O的直徑為6cm

∴選A


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

3、已知正方形ABCD,在其平面上存在一點(diǎn)P,使△PAB,△PBC,△PCD,△PAD都是等腰三角形,這樣的點(diǎn)P有( 。﹤(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).
如圖,四邊形ABCD都是平行四邊形,AD∥BC,AB∥CD,設(shè)它的面積為S.
(1)如圖①,點(diǎn)M為AD上任意一點(diǎn),則△BCM的面積S1=
1
2
1
2
S,
△BCD的面積S2與△BCM的面積S1的數(shù)量關(guān)系是
S1=S2
S1=S2

(2)如圖②,設(shè)AC、BD交于點(diǎn)O,則O為AC、BD的中點(diǎn),試探究△AOB的面積與△COD的面積之和S3與平行四邊形的面積S的數(shù)量關(guān)系.
(3)如圖③,點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn)時(shí),記△PAB的面積為Sˊ,△PCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得Sˊ、S〞的和與S的數(shù)量關(guān)系式為
S′+S″=
1
2
S
S′+S″=
1
2
S

(4)如圖④,已知點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn),△PAB的面積為3,△PBC的面積為7,求△PBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們知道:平行四邊形的面積=(底邊)×(這條底邊上的高).
如圖,四邊形ABCD都是平行四邊形,AD∥BC,AB∥CD,設(shè)它的面積為S.作业宝
(1)如圖①,點(diǎn)M為AD上任意一點(diǎn),則△BCM的面積S1=______S,
△BCD的面積S2與△BCM的面積S1的數(shù)量關(guān)系是______.
(2)如圖②,設(shè)AC、BD交于點(diǎn)O,則O為AC、BD的中點(diǎn),試探究△AOB的面積與△COD的面積之和S3與平行四邊形的面積S的數(shù)量關(guān)系.
(3)如圖③,點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn)時(shí),記△PAB的面積為Sˊ,△PCD的面積為S〞,平行四邊形ABCD的面積為S,猜想得Sˊ、S〞的和與S的數(shù)量關(guān)系式為______.
(4)如圖④,已知點(diǎn)P為平行四邊形ABCD內(nèi)任意一點(diǎn),△PAB的面積為3,△PBC的面積為7,求△PBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方形ABCD,在其平面上存在一點(diǎn)P,使△PAB,△PBC,△PCD,△PAD都是等腰三角形,這樣的點(diǎn)P有( 。﹤(gè).
A.4B.5C.9D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案