【題目】如圖,在平面直角坐標系中,拋物線y= x2 x﹣ 與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.

(1)求直線AE的解析式;
(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當△PCE的面積最大時,連接CD,CB,點K是線段CB的中點,點M是CP上的一點,點N是CD上的一點,求KM+MN+NK的最小值;
(3)點G是線段CE的中點,將拋物線y= x2 x﹣ 沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

【答案】
(1)

解:∵y= x2 x﹣ ,

∴y= (x+1)(x﹣3).

∴A(﹣1,0),B(3,0).

當x=4時,y=

∴E(4, ).

設直線AE的解析式為y=kx+b,將點A和點E的坐標代入得:

解得:k= ,b=

∴直線AE的解析式為y= x+


(2)

解:設直線CE的解析式為y=mx﹣ ,將點E的坐標代入得:4m﹣ = ,解得:m=

∴直線CE的解析式為y= x﹣

過點P作PF∥y軸,交CE與點F.

設點P的坐標為(x, x2 x﹣ ),則點F(x, x﹣ ),

則FP=( x﹣ )﹣( x2 x﹣ )= x2+ x.

∴△EPC的面積= ×( x2+ x)×4=﹣ x2+ x.

∴當x=2時,△EPC的面積最大.

∴P(2,﹣ ).

如圖2所示:作點K關(guān)于CD和CP的對稱點G、H,連接G、H交CD和CP與N、M.

∵K是CB的中點,

∴k( ,﹣ ).

∵點H與點K關(guān)于CP對稱,

∴點H的坐標為( ,﹣ ).

∵點G與點K關(guān)于CD對稱,

∴點G(0,0).

∴KM+MN+NK=MH+MN+GN.

當點O、N、M、H在條直線上時,KM+MN+NK有最小值,最小值=GH.

∴GH= =3.

∴KM+MN+NK的最小值為3.


(3)

解:如圖3所示:

∵y′經(jīng)過點D,y′的頂點為點F,

∴點F(3,﹣ ).

∵點G為CE的中點,

∴G(2, ).

∴FG= =

∴當FG=FQ時,點Q(3, ),Q′(3, ).

當GF=GQ時,點F與點Q″關(guān)于y= 對稱,

∴點Q″(3,2 ).

當QG=QF時,設點Q1的坐標為(3,a).

由兩點間的距離公式可知:a+ = ,解得:a=﹣

∴點Q1的坐標為(3,﹣ ).

綜上所述,點Q的坐標為(3, )或′(3, )或(3,2 )或(3,﹣ ).


【解析】(1)拋物線的解析式可變形為y= (x+1)(x﹣3),從而可得到點A和點B的坐標,然后再求得點E的坐標,設直線AE的解析式為y=kx+b,將點A和點E的坐標代入求得k和b的值,從而得到AE的解析式;(2)設直線CE的解析式為y=mx﹣ ,將點E的坐標代入求得m的值,從而得到直線CE的解析式,過點P作PF∥y軸,交CE與點F.設點P的坐標為(x, x2 x﹣ ),則點F(x, x﹣ ),則FP= x2+ x.由三角形的面積公式得到△EPC的面積=﹣ x2+ x,利用二次函數(shù)的性質(zhì)可求得x的值,從而得到點P的坐標,作點K關(guān)于CD和CP的對稱點G、H,連接G、H交CD和CP與N、M.然后利用軸對稱的性質(zhì)可得到點G和點H的坐標,當點O、N、M、H在條直線上時,KM+MN+NK有最小值,最小值=GH;(3)由平移后的拋物線經(jīng)過點D,可得到點F的坐標,利用中點坐標公式可求得點G的坐標,然后分為QG=FG、QG=QF,F(xiàn)Q=FQ三種情況求解即可.
【考點精析】利用二次函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)當∠ABE為多少度時,四邊形BEDF是菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校陽光足球俱樂部計劃購進一批甲、乙兩種型號的足球,乙型足球每個進價比甲型足球每個進價多10元,若購進甲型足球3個和乙型足球5個,共需要資金370元.

1)求甲、乙兩種型號的足球進價各是多少元?

2)該商店計劃購進這兩種型號的足球共50個,而可用于購買這兩種型號的足球資金不少于2250元,但又不超過2270元.該商店有幾種進貨方案?

3)已知商店出售一個甲種足球可獲利6元,出售一個乙種足球可獲利10元,試問在(2)的條件下,商店采用哪種方案可獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學新建了一棟7層的教學大樓,每層樓有8間教室,進出這棟大樓共有八道門,其中四道正門大小相同,四道側(cè)門大小也相同.安全檢查中,對八道門進行了測試:當同時開啟一道正門和兩道側(cè)門時,2分內(nèi)可以通過560名學生;當同時開啟一道正門和一道側(cè)門時,4分內(nèi)可以通過800名學生.

1)平均每分內(nèi)一道正門和一道側(cè)門分別可以通過多少名學生?

2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率將降低30%.安全檢查規(guī)定:在緊急情況下全大樓的學生應在5分內(nèi)通過這八道門安全撤離,假設這棟教學大樓每間教室最多有45名學生,問建造的這八道門是否符合安全規(guī)定?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料I:

教材中我們學習了:若關(guān)于的一元二次方程的兩根為,根據(jù)這一性質(zhì),我們可以求出己知方程關(guān)于的代數(shù)式的值.

問題解決:

1)已知為方程的兩根,則: __ _,__ _,那么_ (請你完成以上的填空)

閱讀材料:II

已知,且.求的值.

:可知

,即

是方程的兩根.

問題解決:

2)若 ;

3)已知.求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的頂點A,C分別在y軸和x軸上,邊BC的中點Fy軸上,若反比例函數(shù)y的圖象恰好經(jīng)過CD的中點E,則OA的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+c與x軸交于A,B兩點,頂點為C,點P為拋物線上,且位于x軸下方.

(1)如圖1,若P(1,﹣3),B(4,0).
①求該拋物線的解析式;
②若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2)如圖2,已知直線PA,PB與y軸分別交于E、F兩點.當點P運動時, 是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)2-1+sin30°-|-2|;
(2)(-1)0-|3-π|+ .

查看答案和解析>>

同步練習冊答案