中,已知,則的大小是______度;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在三角形紙片ABC中,已知∠ABC=90°,AB=6,BC=8.過點(diǎn)A作直線l平行于BC,折疊三角形紙片ABC,使直角頂點(diǎn)B落在直線l上的T處,折痕為MN.當(dāng)點(diǎn)T在直線l上移動(dòng)時(shí),折痕的端點(diǎn)M、N也隨之移動(dòng).若限定端點(diǎn)M、N分別在AB、BC邊上移動(dòng),則線段AT長(zhǎng)度的最大值與最小值之和為
 
 (計(jì)算結(jié)果不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•椒江區(qū)一模)我們把三角形內(nèi)部的一個(gè)點(diǎn)到這個(gè)三角形三邊所在直線距離的最小值叫做這個(gè)點(diǎn)到這個(gè)三角形的距離.如圖1,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,如果PE≥PF≥PD,則稱PD的長(zhǎng)度為點(diǎn)P到△ABC的距離.如圖2、圖3,在平面直角坐標(biāo)系中,已知A(6,0),B(0,8),連接AB.
(1)若P在圖2中的坐標(biāo)為(2,4),則P到OA的距離為
4
4
,P到OB的距離為
2
2
,P到AB的距離為
0.8
0.8
,所以P到△AOB的距離為
0.8
0.8

(2)若點(diǎn)Q是圖2中△AOB的內(nèi)切圓圓心,求點(diǎn)Q到△AOB距離的最大值;
(3)若點(diǎn)R是圖3中△AOB內(nèi)一點(diǎn),且點(diǎn)R到△AOB的距離為1,請(qǐng)畫出所有滿足條件的點(diǎn)R所形成的封閉圖形,并求出這個(gè)封閉圖形的周長(zhǎng).(畫圖工具不限)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽城)在平面直角坐標(biāo)系xOy中,已知二次函數(shù)y=
1
4
x2+mx+n
的圖象經(jīng)過點(diǎn)A(2,0)和點(diǎn)B(1,-
3
4
),直線l經(jīng)過拋物線的頂點(diǎn)且與y軸垂直,垂足為Q.

(1)求該二次函數(shù)的表達(dá)式;
(2)設(shè)拋物線上有一動(dòng)點(diǎn)P從點(diǎn)B處出發(fā)沿拋物線向上運(yùn)動(dòng),其縱坐標(biāo)y1隨時(shí)間t(t≥0)的變化規(guī)律為y1=-
3
4
+2t.現(xiàn)以線段OP為直徑作⊙C.
①當(dāng)點(diǎn)P在起始位置點(diǎn)B處時(shí),試判斷直線l與⊙C的位置關(guān)系,并說明理由;在點(diǎn)P運(yùn)動(dòng)的過程中,直線l與⊙C是否始終保持這種位置關(guān)系?請(qǐng)說明你的理由.
②若在點(diǎn)P開始運(yùn)動(dòng)的同時(shí),直線l也向上平行移動(dòng),且垂足Q的縱坐標(biāo)y2隨時(shí)間t的變化規(guī)律為y2=-1+3t,則當(dāng)t在什么范圍內(nèi)變化時(shí),直線l與⊙C相交?此時(shí),若直線l被⊙C所截得的弦長(zhǎng)為a,試求a2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索:在圖1至圖3中,已知△ABC的面積為a,
(1)如圖1,延長(zhǎng)△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示)
(2)如圖2,延長(zhǎng)△ABC的邊BC到點(diǎn)D,延長(zhǎng)邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示)
(3)在圖2的基礎(chǔ)上延長(zhǎng)AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示),并運(yùn)用上述(2)的結(jié)論寫出理由.
發(fā)現(xiàn):像上面那樣,將△ABC各邊均順次延長(zhǎng)一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時(shí),我們稱△ABC向外擴(kuò)展了一次.可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.
應(yīng)用:要在一塊足夠大的空地上栽種花卉,工程人員進(jìn)行了如下的圖案設(shè)計(jì):首先在△ABC的空地上種紅花,然后將△ABC向外擴(kuò)展三次(圖4已給出了前兩次擴(kuò)展的圖案).在第一次擴(kuò)展區(qū)域內(nèi)種謊話,第二次擴(kuò)展區(qū)域內(nèi)種紫花,第三次擴(kuò)展區(qū)域內(nèi)種藍(lán)花.如果種紅花的區(qū)域(即△ABC)的面積是10平方米,請(qǐng)你運(yùn)用上述結(jié)論求出:
(1)種紫花的區(qū)域的面積;
(2)種藍(lán)花的區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角坐標(biāo)系中,已知兩點(diǎn)O(0,0),A(2,0),點(diǎn)B在第一象限且△OAB精英家教網(wǎng)為正三角形.△OAB的外接圓交y軸的正半軸于點(diǎn)C.
(1)點(diǎn)B的坐標(biāo)是
 
,點(diǎn)C的坐標(biāo)是
 

(2)過點(diǎn)C的圓的切線交x軸于點(diǎn)D,則圖中陰影部分的面積是
 
;
(3)若OH⊥AB于點(diǎn)H,點(diǎn)P在線段OH上.點(diǎn)Q在y軸的正半軸上,OQ=PH,PQ與OB交于點(diǎn)M.
①當(dāng)△OPM為等腰三角形時(shí),求點(diǎn)Q的坐標(biāo);
②探究線段OM長(zhǎng)度的最大值是多少,直接寫出結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案