已知正整數(shù)n大于30,且使得4n-1整除2002n,求n的值.
∵2002n=2n×1001,
若4n-1整除2002n,
∵2n不可能是(4n-1)的倍數(shù),
∴1001是4n-1的倍數(shù),
∵1001=7×143,
∴4n-1=143,
∴n=36.
故答案為:36.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知正n邊形的周長為60,邊長為a.
(1)當(dāng)n=3時(shí),請直接寫出a的值;
(2)把正n邊形的周長和邊數(shù)同時(shí)增加8后,得到邊數(shù)為n+8,周長為68的正多邊形,設(shè)該正多邊形的邊長為b,有人分別取n等于9、20、30,再求出相應(yīng)的a與b的值,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認(rèn)為這種說法對嗎?若不對,請利用所學(xué)知識求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、已知正整數(shù)n大于30,且使得4n-1整除2002n,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知正n邊形的周長為60,邊長為a.
(1)當(dāng)n=3時(shí),請直接寫出a的值;
(2)把正n邊形的周長和邊數(shù)同時(shí)增加8后,得到邊數(shù)為n+8,周長為68的正多邊形,設(shè)該正多邊形的邊長為b,有人分別取n等于9、20、30,再求出相應(yīng)的a與b的值,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認(rèn)為這種說法對嗎?若不對,請利用所學(xué)知識求出不符合這一說法的n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年北京市順義區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知正n邊形的周長為60,邊長為a.
(1)當(dāng)n=3時(shí),請直接寫出a的值;
(2)把正n邊形的周長和邊數(shù)同時(shí)增加8后,得到邊數(shù)為n+8,周長為68的正多邊形,設(shè)該正多邊形的邊長為b,有人分別取n等于9、20、30,再求出相應(yīng)的a與b的值,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認(rèn)為這種說法對嗎?若不對,請利用所學(xué)知識求出不符合這一說法的n的值.

查看答案和解析>>

同步練習(xí)冊答案