如圖是一座人行天橋的引橋部分的示意圖,上橋通道由兩段互相平行并且與地面成37°角的樓梯AD、BE和一段水平平臺(tái)DE構(gòu)成.已知天橋高度BC=4.8m,引橋水平跨度AC=8m.
(1)求水平平臺(tái)DE的長(zhǎng)度;
(2)若AD:BE=5:3,求與地面垂直的平臺(tái)立柱GH的高度.
(參考數(shù)據(jù):取sin37°=0.60,cos37°=0.80,tan37°=0.75)
分析:(1)延長(zhǎng)BE交AC于F,從而得出四邊形DAFE為平行四邊形,在RT△BCF中,求出CF,則可得出DE的長(zhǎng)度.
(2)先判斷出△FEM∽△FBC,然后根據(jù)AD:BE=5:3,可得出
EF
BF
=
5
8
,繼而可解出EM的長(zhǎng)度,也可得出GH的高度.
解答:解:(1)延長(zhǎng)BE交AC于F,

根據(jù)題意得,四邊形DAFE為平行四邊形,
故DE=AF,DA=FE,
∵DA∥FE,
∴∠BFC=∠A=37°,
在RT△BCF中,BC=4.8,
∴CF=
BC
tan∠BFC
=
4.8
0.75
=6.4(m),
∴DE=AC-CF=1.6(m).
(2)作EM⊥AC于M,得EM=GH,

∵EM∥BC,
∴△FEM∽△FBC,
EM
BC
=
FE
FB
,
AD
BE
=
5
3
,
EF
BF
=
5
8
,
∴EM=3,即GH=3(m).
答:與地面垂直的平臺(tái)立柱GH的高度為3m.
點(diǎn)評(píng):此題考查的知識(shí)點(diǎn)是相似三角形的應(yīng)用及解直角三角形的應(yīng)用,關(guān)鍵是由已知首先構(gòu)建直角三角形,運(yùn)用相似三角形的性質(zhì)求解,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是一座人行天橋的引橋部分的示意圖,上橋通道由兩段互相平行并且與地面成37°精英家教網(wǎng)角的樓梯AD、BE和一段水平平臺(tái)DE構(gòu)成.已知天橋高度BC=4.8米,引橋水平跨度AC=8米.
(1)求水平平臺(tái)DE的長(zhǎng)度;
(2)若與地面垂直的平臺(tái)立枉MN的高度為3米,求兩段樓梯AD與BE的長(zhǎng)度之比.
(參考數(shù)據(jù):取sin37°=0.60,cos37°=0.80,tan37°=0.75.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是一座人行天橋的示意圖,天橋的高是10米,坡面的傾斜角為45°.為了方便行人推車過(guò)天橋,市政部門決定降低坡度,使新坡面的傾斜角為30°,若新坡角下需留3米的人行道,問(wèn)離原坡角10米的建筑物是否需要拆除?(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732.)
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•南安市質(zhì)檢)如圖是一座人行天橋的示意圖,天橋的高BC為10米,坡面AC的坡角為53°.
(1)求AB的長(zhǎng)度.(精確到0.01米)
(2)為了方便行人推車過(guò)天橋,市政部門決定降低坡度,使新坡面DC的坡角為30°,且新的坡角外側(cè)需留3米寬的人行道,問(wèn)離原坡角12米的建筑物EF是否需要拆除?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•江寧區(qū)二模)如圖是一座人行天橋的示意圖,天橋的高CB為10米,坡面CA的坡角為30°.為了方便行人推車過(guò)橋,市政部門決定降低坡度,使新坡面CD的坡角為18°,若新橋腳前需留4米的人行道,問(wèn)離原坡腳15米的花壇是否需要拆除?請(qǐng)說(shuō)明理由.
(參考數(shù)據(jù):sinl8°≈0.3090,cosl8°≈0.9511,tanl8°≈0.3249,
2
1.414,
3
≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案