【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:
(1)頻數(shù)分布表中a = ,b= ,并將統(tǒng)計圖補充完整;
(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?
(3)已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?
【答案】(1)a=0.3,b=4;(2)99人;(3)
【解析】(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;
(2)利用用樣本估計總體的知識求解即可求得答案;
(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.
(1)a=1-0.15-0.35-0.20=0.3;
∵總?cè)藬?shù)為:3÷0.15=20(人),
∴b=20×0.20=4(人);
故答案為:0.3,4;
補全統(tǒng)計圖得:
(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);
(3)畫樹狀圖得:
∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學生的有3種情況,
∴所選兩人正好都是甲班學生的概率是:.
科目:初中數(shù)學 來源: 題型:
【題目】為提倡節(jié)約用水,我縣自來水公司每月只給某單位計劃內(nèi)用水200噸,計劃內(nèi)用水每噸收費2.4元,超計劃部分每噸按3.6元收費.
⑴用代數(shù)式表示下列問題(最后結(jié)果需化簡 ):設用水量為噸,當用水量小于等于200噸時,需付款多少元?當用水量大于200噸時,需付款多少元?
⑵若某單位4月份繳納水費840元,則該單位用水量多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀第①小題的計算方法,再計算第②小題.
①–5+(–9)+17+(–3)
解:原式=[(–5)+(–)]+[(–9)+(–)]+(17+)+[(–3+(–)]
=[(–5)+(–9)+(–3)+17]+[(–)+(–)+(–)+]
=0+(–1)
=–1.
上述這種方法叫做拆項法.靈活運用加法的交換律、結(jié)合律可使運算簡便.
②仿照上面的方法計算:(﹣2000)+(﹣1999)+4000+(﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),頂點的坐標分別為,、.
(1)平移,使點移到點,畫出平移后的,并寫出點的坐標.
(2)將繞點旋轉(zhuǎn),得到,畫出旋轉(zhuǎn)后的,并寫出點的坐標.
(3)求(2)中的點旋轉(zhuǎn)到點時,點經(jīng)過的路徑長(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“四書五經(jīng)”是中國的“圣經(jīng)”,“四書五經(jīng)”是《大學》、《中庸》、《論語》和《孟子》(四書)及《詩經(jīng)》、《尚書》、《易經(jīng)》、《禮記》、《春秋》(五經(jīng))的總稱,這是一部被中國人讀了幾千年的教科書,包含了中國古代的政治理想和治國之道,是我們了解中國古代社會的一把鑰匙,學校計劃分階段引導學生讀這些書,計劃先購買《論語》和《孟子》供學生使用,已知用500元購買《孟子》的數(shù)量和用800元購買《論語》的數(shù)量相同,《孟子》的單價比《論語》的單價少15元.
(1)求《論語》和《孟子》這兩種書的單價各是多少?
(2)學校準備一次性購買這兩種書本,但總費用不超過元,那么這所學校最多購買多少本《論語》?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD 的中位線,四邊形EFGH為△ACD的內(nèi)接矩形(矩形的四個頂點均在△ACD的邊上).
(1)計算矩形EFGH的面積;
(2)將矩形EFGH沿AB向右平移,F落在BC上時停止移動.在平移過程中,當矩形與△CBD重疊部分的面積為時,求矩形平移的距離;
(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形,將矩形繞點按順時針方向旋轉(zhuǎn),當落在CD上時停止轉(zhuǎn)動,旋轉(zhuǎn)后的矩形記為矩形,設旋轉(zhuǎn)角為,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,OC是∠AOB的平分線.
(1)當∠AOB = 60°時,求∠AOC的度數(shù);
(2)在(1)的條件下,過點O作OE⊥OC,補全圖形,并求∠AOE的度數(shù);
(3)當∠AOB =時,過點O作OE⊥OC,直接寫出∠AOE的度數(shù)(用含代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當A落在四邊形BCDE內(nèi)時,則∠A與∠1+∠2之間有始終不變的關系是( )
A.∠A=∠1+∠2B.2∠A=∠1+∠2
C.3A=∠1+∠2D.3∠A=2(∠1+∠2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com