【題目】將下列各式分解因式

1

2x3+x2y-xy2-y3

3)利用分解因式進(jìn)行計算:3.46×14.7+0.54×14.7-29.4

【答案】1;2(x+y)2(x-y);329.4

【解析】

1)運用提取公因式和完全平方公式即可解答;

2)運用立方差公式、提出公因式和完全平方公式即可解答;

3)先把29.4化為2×14.7,再應(yīng)用提取公因式進(jìn)行化簡計算即可解答.

解:(1)原式=;

2)原式= x3 -y3+x2y-xy2=x -y)(x+xy+y+xyx-y=(x+y)2(x-y);

33.46×14.7+0.54×14.7-29.4=3.46×14.7+0.54×14.7-2×14.7=14.73.46+0.54-2=29.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在行駛完某段全程600千米的高速公路時,李師傅對張師傅說:“你的車速太快了,平均每小時比我多跑20千米,比我少用1.5小時就跑完了全程.”

1)若這段高速公路全程限速120千米/小時,兩人全程均勻速行駛.那么張師傅超速了嗎?請說明理由;

2)張師傅所行駛的車內(nèi)油箱余油量(升)與行駛時間(時)的函數(shù)關(guān)系如圖所示,則行駛完這段高速公路,他至少需要多少升油?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班級45名同學(xué)自發(fā)籌集到1700元資金,用于初中畢業(yè)時各項活動的經(jīng)費.通過商議,決定拿出不少于544元但不超過560元的資金用于請專業(yè)人士拍照,其余資金用于給每名同學(xué)購買一件文化衫或一本制作精美的相冊作為紀(jì)念品.已知每件文化衫28元,每本相冊20元.
(1)適用于購買文化衫和相冊的總費用為W元,求總費用W(元)與購買的文化衫件數(shù)t(件)的函數(shù)關(guān)系式.
(2)購買文化衫和相冊有哪幾種方案?為了使拍照的資金更充足,應(yīng)選擇哪種方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形 ABCD 的對角線 ACBD 交于 O 點,AEBD,∠AED=∠AOD,連接 OE

1)求證:AEOB;

2)求證:四邊形 CDEO 是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請先閱讀下列材料,再解答下列問題:

材料:因式分解:(x y22(x y1

解:將“ x y”看成整體,令 x y=A ,則

原式 A2A 1 ( A 12

再將A還原,得:原式 (x y 12 上述解題時用到的是整體思想,整體思想是數(shù)學(xué)解題中常用的一種思想方法,請你解答下列問題:

1)因式分解:(x y26(x y 9 =

2)因式分解:(a b(a b 4 4 ;

3)證明:若 n 為正整數(shù),則式子(n 1(n 2(n23n 1 的值一定是某一個整數(shù)的平方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩條拋物線的頂點相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.

(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點為C,點B的坐標(biāo)為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉(zhuǎn)90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標(biāo),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明的數(shù)學(xué)作業(yè)本上都是等距的橫線,相鄰兩條橫線的距離都是1厘米,他把一個等腰直角三角板放ABC(∠ACB=90°,AC=BC)在本子上,點A、BC恰好都在橫線上,則斜邊AB的長度為( 。

A.10B.3C.4D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于xy的二元一次方程組的解都為正數(shù).

1)求a的取值范圍;

2)化簡|a+1|﹣|a﹣1|;

3)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,且OE=OD,則AP的長為

查看答案和解析>>

同步練習(xí)冊答案