如圖,已知矩形ABCD的邊BC在x軸上,E是對角線BD的中點,函數(shù)y=
kx
(x>0)
的圖象經(jīng)過點(1,3),且又經(jīng)過A,E兩點;
(1)求k的值;
(2)若設(shè)點E的橫坐標(biāo)為m,試求點C的橫坐標(biāo);(用m的式子表示)
(3)在(2)的條件下,當(dāng)∠ABD=45°時,求m的值.
分析:(1)把點(1,3)代入y=
k
x
,得出k的值即可;
(2)設(shè)點E的坐標(biāo)(m,
3
m
),由當(dāng)y=
6
m
時,有
3
x
=
6
m
,所以x=
1
2
m
進而求出,點E的橫坐標(biāo)為m,點C的橫坐標(biāo).
(3)當(dāng)∠ABD=45°時,AB=BC=m,得出點A的坐標(biāo)為(
1
2
m,m)
,把點A代入y=
3
x
求出即可.
解答:解:(1)把點(1,3)代入y=
k
x
,得:k=3;

(2)當(dāng)x=m時,y=
3
m
,所以E點坐標(biāo)為 (m,
3
m
)

又因為E為BD的中點,所以點A的縱坐標(biāo)為:
3
m
×2=
6
m
,
當(dāng)y=
6
m
時,有
3
x
=
6
m
,所以x=
1
2
m
,
即 點B的橫坐標(biāo)為
1
2
m
,
又因為點E的橫坐標(biāo)為m,所以點C的橫坐標(biāo)為
3
2
m
;

(3)易知BC=m,當(dāng)∠ABD=45°時,AB=BC=m,
此時,點A的坐標(biāo)為(
1
2
m,m)
,把點A代入y=
3
x

得m=
3
m
2
,
解得:m1=-
6
(不合題意舍去),m2=
6
點評:此題考查了反比例函數(shù)的圖象的性質(zhì)以及其與直線的關(guān)系,利用形數(shù)結(jié)合解決此類問題,是非常有效的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形DEFG內(nèi)接于Rt△ABC,D在AB上,E、F在BC上,G在AC上,∠BAC=90°,AB=6cm,AC=8cm,S矩形DEFG=
454
,則矩形的邊長DG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中,AB=12cm,BC=6cm,點M沿AB方向從A向B以2cm/秒的速度移動,點N從D沿DA方向以1c精英家教網(wǎng)m/秒的速度移動,如果M、N兩點同時出發(fā),移動的時間為x秒(0≤x≤6).
(1)當(dāng)x為何值時,△MAN為等腰直角三角形?
(2)當(dāng)x為何值時,有△MAN∽△ABC?
(3)愛動腦筋的小紅同學(xué)在完成了以上聯(lián)系后,對該問題作了深入的研究,她認(rèn)為:在M、N的移動過程中(N不與D、A重合,M不與A、B重合),以A、M、C、N為頂點的四邊形面積是一個常數(shù).她的這種想法對嗎?請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正三角形ABC的邊長AB是480毫米.一質(zhì)點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向精英家教網(wǎng)點A運動.
(1)建立合適的直角坐標(biāo)系,用運動時間t(秒)表示點D的坐標(biāo);
(2)過點D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);
(3)過點D、B、C作平行四邊形,當(dāng)t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•寧德質(zhì)檢)如圖,已知Rt△ABC,∠B=90°,AB=8,BC=6,把斜邊AC平均分成n段,以每段為對角線作邊與AB、BC平行的小矩形,則這些小矩形的面積和是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD中AB:BC=3:1,點A、B在x軸上,直線y=mx+n(0<m<n<
1
2
),過點A、C交y軸于點E,S△AOE=
9
8
S矩形ABCD,拋物線y=ax2+bx+c過點A、B,且頂點G在直線y=mx+n上,拋物線與y軸交于點F.
(1)點A的坐標(biāo)為
(-3n,0)
(-3n,0)
;B的坐標(biāo)
(-n,0)
(-n,0)
(用n表示);
(2)abc=
-
4
9
-
4
9

查看答案和解析>>

同步練習(xí)冊答案