【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷不正確的是( 。

A. ac<0 B. a﹣b+c>0 C. b=﹣4a D. a+b+c>0

【答案】B

【解析】

利用拋物線開口方向得到a<0,利用拋物線與y軸的交點位置得到c>0,則可對A進行判斷;利用x=-1時,y<0可對B進行判斷;利用拋物線的對稱軸方程可對C進行判斷;利用x=1時,y>0對可D進行判斷.

解:∵拋物線開口向下,

a<0,

∵拋物線與y軸的交點在x軸下方,

c>0,

ac<0,所以A選項的判斷正確;

x=-1時,y<0,

a-b+c<0,所以B選項的判斷錯誤;

∵拋物線的對稱軸為直線x=-=2,

b=-4a,所以C選項的判斷正確;

x=1時,y>0,

a+b+c>0,所以D選項的判斷正確.

故選:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點為,經(jīng)過原點且與軸另一交點為

求點的坐標;

為等腰直角三角形,求拋物線的解析式;

現(xiàn)將拋物線繞著點旋轉(zhuǎn)后得到拋物線,若拋物線的頂點為,當,且頂點在拋物線上時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△OAB的頂點坐標分別為O00)、A32)、B2,0),將這三個頂點的坐標同時擴大到原來的2倍,得到對應(yīng)點DE、F

(1)在圖中畫出△DEF;

(2)E是否在直線OA上?為什么?

(3)OAB與△DEF______位似圖形(填“是”或“不是”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示:已知∠ABC=120°,作等邊△ACD,將△ACD旋轉(zhuǎn)60°,得到△CDE,AB=3,BC=2,求BD和∠ABD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于O,B=60°,CD是O的直徑,點P是CD延長線上的一點,且AP=AC.

(1)求證:PA是O的切線;

(2)若AB=4+,BC=2,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

(3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的外接圓,的平分線與相交于點,過點的切線,與的延長線交于點,與的延長線交于點

試判斷的位置關(guān)系,并說明理由;

,求的半徑.

查看答案和解析>>

同步練習冊答案