【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論:①;②的兩個(gè)根是,;③;④.其中正確的有

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

①由拋物線開口向上,可得出a0,結(jié)論①錯(cuò)誤;②根據(jù)拋物線與x軸的交點(diǎn),可得結(jié)論②正確;③由拋物線與x軸的交點(diǎn)求得對(duì)稱軸,得到b2a,當(dāng)x2時(shí),y4a2bc0,代入得8ac0,由a0,可得9ac0,結(jié)論③正確;④把a代入y4a2bc0,整理得到4bc,即可得出bc14,結(jié)論④正確.

解:①∵拋物線開口向上,

a0,結(jié)論①錯(cuò)誤;

②∵拋物線與x軸交于(2,0)和(40)兩點(diǎn),

ax2bxc0的兩個(gè)根是x12,x24,結(jié)論②正確;

③∵拋物線與x軸交于(2,0)和(4,0)兩點(diǎn),

∴拋物線的對(duì)稱軸為直線x1,

b2a

∵當(dāng)x2時(shí),y4a2bc0

8ac0,

a0

9ac0,結(jié)論③正確;

④∵b2a,

a

∵當(dāng)x2時(shí),y4a2bc0

2b2bc0,

4bc

bc14,結(jié)論④正確.

綜上所述,正確的結(jié)論是:②③④.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn).已知反比例函數(shù)的圖象經(jīng)A(﹣2m),過點(diǎn)作ABx軸.垂足為點(diǎn)B,且△OAB的面積為1

1)求km的值;

2)點(diǎn)Cxy)在反比例的圖象上,當(dāng)1x3時(shí),求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點(diǎn)A(-2,0)B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接ACBC,DB,DC,

(1)求拋物線的函數(shù)表達(dá)式;

(2)△BCD的面積等于△AOC的面積的時(shí),求的值;

(3)(2)的條件下,若點(diǎn)M軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,DM,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y的圖象的一個(gè)交點(diǎn)為A(1,n)

(1)求反比例函數(shù)y的表達(dá)式.

(2)若兩函數(shù)圖象的另一交點(diǎn)為B,直接寫出B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=-x2+4x+5

(1)用配方法將y=-x2+4x+5化成y=axh2+k的形式;

(2)指出拋物線的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo);

(3)若拋物線上有兩點(diǎn)Ax1,y1),B(x2,y2),如果x1>x2>2,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣西“稻魚綜合養(yǎng)殖”符合生態(tài)養(yǎng)殖,綠色發(fā)展.某稻魚綜合養(yǎng)殖戶計(jì)劃購買甲,乙兩種禾花魚魚苗,經(jīng)調(diào)查,得到以下信息:

購買重量小于40 kg

購買重量不小于40 kg

甲魚苗

原價(jià)銷售

打七折銷售

乙魚苗

原價(jià)銷售

打八折銷售

如果購買10 kg的甲魚苗和5 kg的乙魚苗需用700元,如果購買20 kg的甲魚苗和15 kg的乙魚苗需用1600元.

1)甲魚苗和乙魚苗的單價(jià)各是多少元?

2)現(xiàn)決定購買甲,乙兩種魚黃共90 kg,其中,乙魚苗的重量不大于甲魚苗重量的2倍,設(shè)購買甲魚苗a kg),求該養(yǎng)殖戶購買這批魚苗的總費(fèi)用Wa之間的函數(shù)解析式;

3)在(2)的條件下,請(qǐng)?jiān)O(shè)計(jì)一種購買方案,使所需總費(fèi)用最低,并求出最低總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場舉辦抽獎(jiǎng)活動(dòng),規(guī)則如下:在不透明的袋子中有2個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,顧客每次摸出一個(gè)球,若摸到紅球,則獲得1份獎(jiǎng)品,若摸到黑球,則沒有獎(jiǎng)品。

1)如果小芳只有一次摸球機(jī)會(huì),那么小芳獲得獎(jiǎng)品的概率為  

2)如果小芳有兩次摸球機(jī)會(huì)(摸出后不放回),求小芳獲得2份獎(jiǎng)品的概率。(請(qǐng)用畫樹狀圖列表等方法寫出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林有3張撲克牌,小麗有2張撲克牌,撲克牌上的數(shù)字如圖所示。兩人用這些撲克牌做游戲,他們分別從自己的撲克牌中隨機(jī)抽取一張。

1)求兩人抽取的撲克牌上的數(shù)字之積為奇數(shù)的概率;(用列表畫樹狀圖的方法說明);

2)若兩人抽取的撲克牌上的數(shù)字之積為奇數(shù),則小林勝,否則小麗勝,這個(gè)游戲公平嗎?若不公平,請(qǐng)修改游戲規(guī)則,使得游戲公平;若公平,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線Myax2+bx+ca≠0)經(jīng)過A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).

(1)求拋物線M的函數(shù)表達(dá)式;

(2)設(shè)Ft,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1

拋物線M1的頂點(diǎn)B1的坐標(biāo)為   ;

當(dāng)拋物線M1與線段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案