【題目】如圖,在正方形ABCD中,點MCD的邊上,且DM=2,ΔAEMΔADM關于AM所在的直線對稱,將ΔADM按順時針方向繞點A旋轉(zhuǎn)90°得到ΔABF,連接EF,已知線段EF的長為,則正方形ABCD的邊長為_____

【答案】5

【解析】

連接BM.先判定△FAE≌△MABSAS),即可得到EF=BM.設正方形邊長為a,則CM=a-2,RtBCM中,利用勾股定理即可得到a的值.

如圖,連接BM

∵△AEM與△ADM關于AM所在的直線對稱,∴AE=AD,∠MAD=MAE

∵△ADM按照順時針方向繞點A旋轉(zhuǎn)90°得到△ABF,∴AF=AM,∠FAB=MAD,∴∠FAB=MAE,∴∠FAB+BAE=BAE+MAE,∴∠FAE=MAB,∴△FAE≌△MABSAS),∴EF=BM

設正方形ABCD的邊長為a,則MC=a-2,BC=a

RtBCM中,∵,∴,解得:a=5a=-3(舍去),∴正方形的邊長為5

故答案為:5

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有一只拉桿式旅行箱如圖1,其側(cè)面示意圖如圖2所示,已知箱體長AB=50 cm,拉桿BC的伸長距離最大時可達35 cm,點A、B、C在同一條直線上,在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面切于點D,在拉桿伸長至最大的情況下,當點B到水平地面MN的距離為38 cm時,點C到水平面的距離CE59 cm.設AFMNAFCE于點G(精確到1 cm,參考數(shù)據(jù):sin64°≈0.90cos64°≈0.39,tan64°≈2.1

(1)求⊙A的半徑長;

(2)當人的手自然下垂拉旅行箱時,人感覺較為舒服,某人將手自然下垂在C端拉旅行箱時,CE80 cm,∠CAF=64°.求此時拉桿BC的伸長距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線ACBD相交于點O,AECF

(1)求證:BOE≌△DOF

(2)若BDEF,連接DEBF,判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過點A(2,1)和點B(0,2).

(1)求出函數(shù)的關系式;

(2)在平面置角坐標系內(nèi)畫一次函數(shù)的圖象,回答下列問題:

①y的值隨著x的值的增大而   ,它的圖象與x軸的交點坐標是   

下列點在一次函數(shù)圖象上的是   

(1,),(﹣2,3),(6,﹣5)

x   ,時,y>0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,沿EF將矩形折疊,使A、C重合,ACEF交于點H.

(1)求證:△ABE≌△AGF;

(2)AB=6,BC=8,求△ABE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+m與雙曲線相交于A2,1)、B兩點.

1)求mk的值;

2)求出點B的坐標;并直接寫出x取何值時,;

3P為直線x=上一點,當 APB的面積為6時,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了貫徹減負增效精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調(diào)查他們每天自主學習的時間.根據(jù)調(diào)查結果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據(jù)統(tǒng)計圖中的信息回答下列問題:

(1)本次調(diào)查的學生人數(shù)是   人;

(2)圖2α   度,并將圖1條形統(tǒng)計圖補充完整;

(3)請估算該校九年級學生自主學習時間不少于1.5小時有   人;

(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經(jīng)驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點.

(1)求反比例函數(shù)的解析式;

(2)求一次函數(shù)的解析式;

(3)點P是x軸上的一動點,試確定點P并求出它的坐標,使PA+PB最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決中小學大班額問題,東營市各縣區(qū)今年將改擴建部分中小學,某縣計劃對A、B兩類學校進行改擴建,根據(jù)預算,改擴建2所A類學校和3所B類學校共需資金7800萬元,改擴建3所A類學校和1所B類學校共需資金5400萬元.

(1)改擴建1所A類學校和1所B類學校所需資金分別是多少萬元?

(2)該縣計劃改擴建A、B兩類學校共10所,改擴建資金由國家財政和地方財政共同承擔.若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?

查看答案和解析>>

同步練習冊答案