一個(gè)圓形人工湖如圖所示,弦AB是湖上的一座橋,已知橋AB長(zhǎng)100m,測(cè)得圓周角∠ACB=45°,則這個(gè)人工湖的直徑AD為( 。
A.50
2
m
B.100
2
m
C.150
2
m
D.200
2
m

連接OB.
∵∠ACB=45°,∠ACB=
1
2
∠AOB(同弧所對(duì)的圓周角是所對(duì)的圓心角的一半),
∴∠AOB=90°;
在Rt△AOB中,OA=OB(⊙O的半徑),AB=100m,
∴由勾股定理得,AO=OB=50
2
m,
∴AD=2OA=100
2
m;
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等腰直角三角形的面積是2平方厘米,則腰長(zhǎng)是( 。
A.
1
2
cm
B.1cmC.2cmD.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小平所在的學(xué)習(xí)小組發(fā)現(xiàn),車(chē)輛轉(zhuǎn)彎時(shí),能否順利通過(guò)直角彎道的標(biāo)準(zhǔn)是,車(chē)輛是否可以行駛到和路的邊界夾角是45°的位置(如圖1中=2\×GB3 ②的位置).例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車(chē)輛的車(chē)身為矩形ABCD,CD與DE、CE的夾角都是45°時(shí),連接EF,交CD于點(diǎn)G,若GF的長(zhǎng)度至少能達(dá)到車(chē)身寬度,即車(chē)輛能通過(guò).
(1)小平認(rèn)為長(zhǎng)8m,寬3m的消防車(chē)不能通過(guò)該直角轉(zhuǎn)彎,請(qǐng)你幫他說(shuō)明理由;
(2)小平提出將拐彎處改為圓。
MM′
NN′
是以O(shè)為圓心,分別以O(shè)M和ON為半徑的。,長(zhǎng)8m,寬3m的消防車(chē)就可以通過(guò)該彎道了,具體的方案如圖3,其中OM⊥OM′,你能幫小平算出,ON至少為多少時(shí),這種消防車(chē)可以通過(guò)該巷子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,∠ACB是Rt∠,CD是斜邊AB上的中線(xiàn),CD=2.5,BC=3,則AC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直角三角形ABC中,∠C=90°,∠BAC=30°,BC=10,則AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在Rt△ABC中,CD是斜邊AB上的中線(xiàn),則圖中與CD相等的線(xiàn)段有( 。
A.AD與BDB.BD與BCC.AD與BCD.AD、BD與BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知△ABC是腰長(zhǎng)為1的等腰直角三角形,以Rt△ABC的斜邊AC為直角邊,畫(huà)第二個(gè)等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫(huà)第三個(gè)等腰Rt△ADE,…,依此類(lèi)推,第n個(gè)等腰直角三角形的面積是(  )
A.2n-2B.2n-1C.2nD.2n+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB=AC,∠BAC=120°,點(diǎn)D在BC上,DB=DA=4,那么BC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出以下四個(gè)結(jié)論:①AE=CF;②tan∠PEF=
3
3
;③S△EPF的最小值為
1
2
;④S四邊形AEPF=1.當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有______.

查看答案和解析>>

同步練習(xí)冊(cè)答案