如圖,OC是⊙O的半徑,AB是弦,且OC⊥AB,點(diǎn)P在⊙O上,∠APC=26°,則∠BOC=   
度.
【答案】分析:由OC是⊙O的半徑,AB是弦,且OC⊥AB,根據(jù)垂徑定理的即可求得:=,又由圓周角定理,即可求得答案.
解答:解:∵OC是⊙O的半徑,AB是弦,且OC⊥AB,
=,
∴∠BOC=2∠APC=2×26°=52°.
故答案為:52°.
點(diǎn)評(píng):此題考查了垂徑定理與圓周角定理.此題比較簡(jiǎn)單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)精英家教網(wǎng)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在直角坐標(biāo)系xoy中,以x軸的負(fù)半軸上一點(diǎn)H為圓心作⊙H與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn).以C為圓心、OC為半徑作⊙C與⊙H交于F、F兩點(diǎn),與y軸交于O、Q兩點(diǎn).直線EF與AC、BC、y軸分別于M、N、G三點(diǎn).直線y=
34
x+3
經(jīng)過(guò)A、C兩點(diǎn).
(1)求tan∠CNM的值;
(2)連接OM、ON,問:四邊形CMON是怎樣的四邊形?請(qǐng)說(shuō)明理由.
(3)如圖,R是⊙C中弧EQ上的一動(dòng)點(diǎn)(不與E點(diǎn)重合),過(guò)R作⊙C的切線RT,若RT與⊙H相交于S、T不同兩點(diǎn).問:CS•CT的值是否發(fā)生變化?若不變,請(qǐng)說(shuō)明理由,并求其值;若變化,請(qǐng)求其值的變化范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直角梯形OABC的直角頂點(diǎn)是坐標(biāo)原點(diǎn),邊OA,OC分別在X軸,y軸的正半軸上.OA∥BC,D是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E,F(xiàn)分別是線段OA,AB上的兩個(gè)動(dòng)點(diǎn),且始終保持∠DEF=45°,如果△AEF是等腰三角形時(shí).將△AEF沿EF對(duì)折得△A′EF與五邊形OEFBC重疊部分的面積為
17
8
或1或
41
2
-48
4
17
8
或1或
41
2
-48
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處.
(1)求過(guò)E點(diǎn)的反比例函數(shù)解析式.
(2)求出D點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案