解方程(1)x2-2
5
x-15=0
(2)x2-6x+9=(5-2x)2
分析:(1)a=1,b=-2
5
,c=-15,則△=(-2
5
2-4×1×(-15)=16×5,然后代入求根公式進(jìn)行計(jì)算即可;
(2)方程變形為:(x-3)2=(5-2x)2,然后采用直接開平方法求解.
解答:解:(1)∵a=1,b=-2
5
,c=-15,
∴△=(-2
5
2-4×1×(-15)=16×5,
∴x=
2
5
±
16×5
2×1
=
2
5
±4
5
2
=
5
±2
5
,
所以x1=-
5
,x2=3
5

(2)方程變形為:(x-3)2=(5-2x)2,
∴x-3=±(5-2x),
即x-3=5-2x或x-3=-(5-2x),
所以x1=
8
3
,x2=2.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的解法.可以直接利用它的求根公式求解,它的求根公式為:x=
-b±
b2-4ac
2a
(b2-4ac≥0);用求根公式求解時(shí),先要把方程化為一般式,確定a,b,c的值,計(jì)算出△=b2-4ac,然后代入公式.也考查了用直接開平方法解一元二次方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程
x
x2-1
+
2(x2-1)
x
=3時(shí).設(shè)y=
x
x2-1
,則原方程化為y的整式方程為( 。
A、2y2-6y+1=0
B、y2-3y+2=0
C、2y2-3y+1=0
D、y2+2y-3=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程
(1)x2+2x-3=0                        
(2)3x2-1=6x(用配方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、解方程
(1)x2-25=0                 (2)x2+2x-3=5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程
(1)x2-6x-18=0(配方法)
(2)3x2+5(2x+1)=0(公式法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程
(1)x2+2x=3                
(2)9(x-1)2-4(x+1)2=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案