精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上,已知∠α=36°,求長方形卡片的周長.(精確到1mm)(參考數據:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

【答案】解:作BE⊥l于點E,DF⊥l于點F.

根據題意,得BE=24mm,DF=48mm.

在Rt△ABE中,sin ,

mm

在Rt△ADF中,cos

mm.

∴矩形ABCD的周長=2(40+60)=200mm.


【解析】通過“作BE⊥l于點E,DF⊥l于點F”利用余角的性質可得出∠ADF=α=36°,利用sin36° 、cos36°的定義求出AB、BD,進而求出周長.
【考點精析】根據題目的已知條件,利用正方形的性質和相似三角形的判定與性質的相關知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,直線ykx2kk0),與y軸交于點A,與x軸交于點BAB2

1)直接寫出點A,點B的坐標;

2)如圖2,以AB為邊,在第一象限內畫出正方形ABCD,求直線DC的解析式;

3)如圖3,(2)中正方形ABCD的對角線ACBD即交于點G,函數ymxyx≠0)的圖象均經過點G,請利用這兩個函數的圖象,當mx時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某電信公司提供的移動通訊服務的收費標準有兩種套餐如表

套餐

套餐

每月基本服務費(元)

20

30

每月免費通話時間(分)

100

150

每月超過免費通話時間加收通話費(元/分)

0.4

0.5

李民選用了套餐

15月份李民的通話時間為120分鐘,這個月李民應付話費多少元?

2)李民6月份的通話時間超過了150分鐘,根據自己6月份的通話時間情況計算,如果自己選用套餐可以省4元錢,李民6月份的通話時間是多少分鐘?

310月份李民改用了套餐,李民發(fā)現如果與9月份交相同的話費,10月份他可以多通話15分鐘,李民9月份交了多少話費?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】分如圖,在ABCD中,點E、F分別是AD、BC的中點,分別連接BE、DF、BD.

(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】MON=90°,點AB分別在OMON上運動(不與點O重合).

1)如圖①,AE、BE分別是∠BAO和∠ABO的平分線,隨著點A、點B的運動,∠AEB=  °

2)如圖②,若BC是∠ABN的平分線,BC的反向延長線與∠OAB的平分線交于點D

①若∠BAO=60°,則∠D=    °

②隨著點A,B的運動,∠D的大小會變嗎?如果不會,求∠D的度數;如果會,請說明理由.

3)如圖③,延長MOQ,延長BAG,已知∠BAO,∠OAG的平分線與∠BOQ的平分線及其延長線相交于點E、F,在中,如果有一個角是另一個角的3倍,求∠ABO的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.

(1)寫出你所學過的特殊四邊形中是勾股四邊形的兩種圖形的名稱      ,      ;

(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你直接寫出所有以格點為頂點,OA、OB為勾股邊且有對角線相等的勾股四邊形OAMB的頂點M的坐標.

(3)如圖2,將△ABC繞頂點B按順時針方向旋轉60°,得到△DBE,連接AD、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

(4)若將圖2中△ABC繞頂點B按順時針方向旋轉a度(0°<a<90°),得到△DBE,連接AD、DC,則∠DCB=      °,四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學對本校初2017500名學生中中考參加體育加試測試情況進行調查,根據男生1000米及女生800米測試成績整理,繪制成不完整的統計圖,(圖①,圖②),請根據統計圖提供的信息,回答下列問題:

(1)該校畢業(yè)生中男生有 人;扇形統計圖中a= ;

(2)補全條形統計圖;

(3)若500名學生中隨機抽取一名學生,這名學生該項成績在8分及8分以下的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】菱形ABCD中、∠BAD120°,點O為射線CA 上的動點,作射線OM與直線BC相交于點E,將射線OM繞點O逆時針旋轉60°,得到射線ON,射線ON與直線CD相交于點F

1)如圖①,點O與點A重合時,點E,F分別在線段BCCD上,請直接寫出CE,CF,CA三條段段之間的數量關系;

2)如圖②,點OCA的延長線上,且OAACE,F分別在線段BC的延長線和線段CD的延長線上,請寫出CECF,CA三條線段之間的數量關系,并說明理由;

3)點O在線段AC上,若AB6,BO2,當CF1時,請直接寫出BE的長.

查看答案和解析>>

同步練習冊答案