(2013•德陽)如圖,⊙O的直徑CD過弦EF的中點(diǎn)G,∠DCF=20°,則∠EOD等于( 。
分析:根據(jù)垂徑定理得出弧DF=弧DE,求出弧DE的度數(shù),即可求出答案.
解答:解:∵⊙O的直徑CD過弦EF的中點(diǎn)G,∠DCF=20°,
∴弧DF=弧DE,且弧的度數(shù)是40°,
∴∠DOE=40°,
故選C.
點(diǎn)評:本題考查了圓周角定理,垂徑定理的應(yīng)用,注意:圓心角的度數(shù)等于它所對的弧的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德陽)如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為30°,看這棟高樓底部C的俯角為60°,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德陽)如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE,垂足為G,若BG=4
2
,則△CEF的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德陽)如圖,在⊙O上有定點(diǎn)C和動點(diǎn)P,位于直徑AB的異側(cè),過點(diǎn)C作CP的垂線,與PB的延長線交于點(diǎn)Q,已知:⊙O半徑為
5
2
,tan∠ABC=
3
4
,則CQ的最大值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德陽)如圖,直線y=kx+k(k≠0)與雙曲線y=
n+1
x
交于C、D兩點(diǎn),與x軸交于點(diǎn)A.
(1)求n的取值范圍和點(diǎn)A的坐標(biāo);
(2)過點(diǎn)C作CB⊥y軸,垂足為B,若S△ABC=4,求雙曲線的解析式;
(3)在(1)(2)的條件下,若AB=
17
,求點(diǎn)C和點(diǎn)D的坐標(biāo),并根據(jù)圖象直接寫出反比例函數(shù)的值小于一次函數(shù)的值時,自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案