【題目】如圖,中,,,點(diǎn)上一點(diǎn),以為圓心作,

經(jīng)過、兩點(diǎn),求的半徑,并判斷點(diǎn)的位置關(guān)系.

、都相切,求的半徑.

【答案】的半徑為,點(diǎn)的半徑為

【解析】

(1)設(shè)點(diǎn)D是AC的中點(diǎn),連接CM,DM,易得CM=AM=BM,繼而求得⊙M的半徑,并判斷點(diǎn)B與⊙M的位置關(guān)系.
(2)首先連接EM,FM,可得四邊形CEMF是正方形,設(shè)EM=x,則CE=x,由△AEM∽△ACB,根據(jù)相似三角形的對(duì)應(yīng)邊成比例求得答案.

經(jīng)過、兩點(diǎn),

的垂直平分線上,

設(shè)點(diǎn)的中點(diǎn),連接,,

,

,

的中點(diǎn),

,

連接,

中,,,,

,

,

的半徑為,點(diǎn)上.

連接,,

、都相切,

,,,

,

∴四邊形是正方形,

設(shè),則,

,

,

,

解得:

的半徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,,點(diǎn)開始沿折線的速度運(yùn)動(dòng),點(diǎn)開始沿邊以的速度移動(dòng),如果點(diǎn)、分別從、同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)________時(shí),四邊形也為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小聰遇到這樣一個(gè)有關(guān)角平分線的問題:如圖1,在中,平分,,求的長.

小聰思考:因?yàn)?/span>平分,所以可在邊上取點(diǎn),使,連接.這樣很容易得到,經(jīng)過推理能使問題得到解決(如圖2).

請回答:(1   三角形.

2的長為   

參考小聰思考問題的方法,解決問題:

3)如圖3,已知中,平分,.求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)期間,某食品店平均每天可賣出300只粽子,賣出1只粽子的利潤是1元.經(jīng)調(diào)查發(fā)現(xiàn),零售單價(jià)每降0.1元,每天可多賣出100只粽子.為了使每天獲取的利潤更多,該店決定把零售單價(jià)下降m(0<m<1)元.

(1)零售單價(jià)下降m元后,該店平均每天可賣出_____只粽子,利潤為_____元.

(2)在不考慮其他因素的條件下,當(dāng)m定為多少時(shí),才能使該店每天獲取的利潤是420元并且賣出的粽子更多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)研究發(fā)現(xiàn),一般情況下,在一節(jié)分鐘的課中,學(xué)生的注意力隨學(xué)習(xí)時(shí)間的變化而變化.開始學(xué)習(xí)時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)隨時(shí)間(分鐘)的變化規(guī)律如下圖所示(其中、分別為線段,為雙曲線的一部分).

求注意力指標(biāo)數(shù)與時(shí)間(分鐘)之間的函數(shù)關(guān)系式;

開始學(xué)習(xí)后第分鐘時(shí)與第分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

某些數(shù)學(xué)內(nèi)容的課堂學(xué)習(xí)大致可分為三個(gè)環(huán)節(jié):即教師引導(dǎo),回顧舊知;自主探索,合作交流;總結(jié)歸納,鞏固提高.其中教師引導(dǎo),回顧舊知環(huán)節(jié)分鐘;重點(diǎn)環(huán)節(jié)自主探索,合作交流這一過程一般

需要分鐘才能完成,為了確保效果,要求學(xué)習(xí)時(shí)的注意力指標(biāo)數(shù)不低于.請問這樣的課堂學(xué)習(xí)安排是否合理?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10)閱讀下列材料:

1)關(guān)于x的方程x2-3x+1=0x≠0)方程兩邊同時(shí)乘以得: , ,

2a3+b3=a+b)(a2-ab+b2);a3-b3=a-b)(a2+ab+b2).

根據(jù)以上材料,解答下列問題:

1x2-4x+1=0x≠0),則= ______ , = ______ , = ______ ;

22x2-7x+2=0x≠0),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),另一動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為x(s),AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在復(fù)習(xí)課上,彭老師提出了一個(gè)問題,假如你是彭老師的學(xué)生,你能解決這個(gè)問題嗎?試試吧!

命題有兩邊和其中一邊上的中線對(duì)應(yīng)相等的兩個(gè)三角形全等是真命題嗎?若是,請畫出圖形,寫出已知、求證和證明:如不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中,∠BAC=90°,AB=6,AC=8,D AC 上一點(diǎn),將ABD 沿 BD 折疊,使點(diǎn) A 恰好落在 BC 上的 E 處,則折痕 BD 的長是(

A.5B.C.3 D.

查看答案和解析>>

同步練習(xí)冊答案